• Title/Summary/Keyword: lateral force distribution

Search Result 127, Processing Time 0.027 seconds

Plantar foot pressure analysis during golf swing motion using plantar foot pressure measurement system (족저압력분포 측정장비를 이용한 골프 스윙시 족저압 분석)

  • Lee, Dong-Ki;Lee, Joong-Sook;Lee, Bom-Jin;Lee, Hun-Sik;Kim, Young-Jae;Park, Seung-Bum;Joo, Jong-Peel
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.75-89
    • /
    • 2005
  • D. K. LEE, J. S. LEE, B. J. LEE, H. S. LEE, Y. J. KIM, S. B. PARK, J. P. JOO. Plantar foot pressure analysis during golf swing motion using plantar foot pressure measurement system. Korean Journal of Sport Biomechanics, Vol. 15, No. 1, pp. 75-89, 2005. In this study, weight carrying pattern analysis and comparison method of four foot region were suggested. We used three types of club(driver, iron7, pitching wedge). This analysis method can compare between top class golfer and beginner. And the comparison data can be used to correct the swing pose of trainee. If motion analysis system, which can measure the swing speed and instantaneous acceleration at the point of hitting a ball, is combined with this plantar foot force analysis method, new design development of golf shoes to increase comfort and ball flight distance will be available. 1. Address acting, forces concentrated in rare foot regions and lateral foot of right foot. Back swing top acting, relatively high force occurred in medial forefoot region of left foot and forefoot region of right foot. Impact acting, high force value observed in the lateral rarefoot region of left foot and medial forefoot region of right foot. Finish acting, force concentration observed on the lateral region and rarefoot region of left foot. 2. Forces were increased in address of right foot with clubs length increased. All clubs, back swing top acting, high force value observed in the lateral forefoot region of right foot. All clubs, in impact, high force value observed in the lateral rarefoot region of left foot and medial forefoot region of right foot. Finish acting, force concentration observed on the rarefoot region in driver and lateral foot region in iron on left foot. 3. Right foot forces distribution were increased in address, back swing top and left foot force distribution were increased in impact, finnish

Study on Lateral Flow Distribution and Momentum Analysis at Flood season and Neap tide of the Seokmo Channel in the Han River estuary (소조기 홍수시 한강하구 석모수로에서의 횡 방향 2차 흐름 및 운동량 분석)

  • Choi, Nak Yong;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.6
    • /
    • pp.390-399
    • /
    • 2012
  • This research observed the cross section current of 7 survey lines in Seokmo Channel of Gyeonggi bay with a lot of freshwater inflow and S-shaped for 13 hours during flood season and neap tide. We indicated the distribution of the current velocity by comprehending the speed and direction of the current velocity of each line during maximum flood, ebb tide and observed the distribution of salinity. Moreover, in order to understand what lateral momentum causes the lateral flow in each survey line, we practiced the momentum analysis through the observation data. As a result, the lateral baroclinic pressure gradient force and vertical friction of the Seokmo channel during neap tide were the strongest, and this is why the flow by the distribution of salinity and stratification most often occurs. In north of the Seokmo channel, where have wide intertidal and a lot of freshwater inflow, the secondary circulation is caused by balance of lateral baroclinic pressure gradient force and other forces, and the vertical friction was strong in the lines with small depth. On the other hand, in the southern part of the Seokmo channel where the water is deep and the waterway is curved, the advective acceleration and centrifugal force become stronger by the geographical causes during ebb and the influence of fresh water. Therefore, the lateral flow in the Seokmo channel was caused by the distribution of the momentum that differs by location, depth, curve, etc.

A comparison study for mask plantar pressure measures to the difference of shoes in 20 female (20대 여성의 신발종류에 따른 족저압 영역별 비교 연구)

  • Kim, Y.J.;Ji, J.G.;Kim, J.T.;Hong, J.H.;Lee, J.S.;Lee, H.S.;Park, S.B.
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.83-98
    • /
    • 2004
  • The purpose of this study was to investigate the test-retest of plantar pressures using the F-Scan system over speeds and plantar regions. 6 healthy female subjects in 20's were recruited for the study. Plantar pressure measurements during locomotor activities can provide information concerning foot function, particularly if the timing and magnitude of the loading profile can be related to the location of specific foot structures such as the metatarsal heads. The Tekscan F-Scan system consists of a flexible, 0.18mm thick sole-shape having 1260 pressure sensors, the sensor insole was trimmed to fit the subjects' right. left shoes - sneakers shoes & dress shoes. It was calibrated by the known weight of the test subject standing on one foot. The Tekscan measurements show the insole pressure distribution as a function of the time. This finding has important implications for the development of plantar pressure test protocols where the function of the forefoot is important. According to the result of analysis it is as follows 1) Center of force trajectory in women's dress shoes display direct movement, compare with center of force trajectory in Sneaker shoes displays a little bit curved slow pronation movement. Sneaker shoes in forefoot part display very quick supination movement, therefore, this shoes effects negative effectiveness for ankle's stability Considering center of force trajectory analyzing the more center of force close straight line, the more movement can be quick movement for locomotion. For foot pressure distribution, center of force trajectory in locomotion is better to curved trajectory with pronation movement. So sneaker shoes style is good shoes considering center of pressure distribution trajectory compare with women's dress shoes. 2) Women's dress shoes increased peak pressure in medial, this is effected by high hill's height. The more increased women's dress shoes's height, the more women's peak pressure will increase, pronation can increase compare with before. Supination movement increase, this focused pressure in lateral, also, supination increased more. If the supination movement increased, foot pressure focused in lateral, therefore, it is appeared force distribution in gait direction. This is bad movement in foot's stability. 3) Women's dress shoes in landing phase displayed a long time, this is when women's dress shoes wear, gait movement is unbalance, so, landing phase displayed a long time. For compensation in gait, swing phase quick movement. 4) Women's dress shoes displayed peak pressure distribution in lateral of rearfoot part, Sneakers shoes displayed peak pressure distribution in medial of forefoot part. Its results has good impact absorption compare with women's dress shoes. In forefoot part, sneakers shoes has good propulsive force compare with women's dress shoes.

The Characteristic Analysis of a Single-Sided Linear Induction Motor due to the Lateral Displacement of the Primary and the Secondary by the F.E.M. (유한 요소법에 의한 편측식 선형유도전동기의 1차측과 2차측의 횡방향 편위에 따른 특성해석)

  • 임달호;최창규;조철직;조윤현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.8
    • /
    • pp.820-827
    • /
    • 1990
  • For the purpose of investigation the thrust force, the lateral force, and the eddy current loss when the primary and the secondary of a single-sided linear induction motor is displaced in the space, this paper proposes an analysis technique for the characteristics of the eddy current induced on the secondary and the magnetic flux density distribution in the y-z plane by F.E.M. To verify the effectiveness of this analysis technique, the starting-thrust force due to a lateral displacement is compared to the experimental data.

  • PDF

Behavior Analysis of Earth Retaining Walls on the Excavation for Contact Structure (인접 구조물의 터파기로 인한 흙막이 벽체의 거동 분석)

  • Kim, Young-Muk;Jung, Young-Soo;Hong, Chang-Pyo;Shin, Youn-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1496-1503
    • /
    • 2005
  • The study on the lateral earth pressure is briskly preformed for various conditions such as type of retaining walls, ground condition, and type of supporting systems. It is not simple to determine the distribution of lateral earth pressure accurately, however, because the lateral earth pressure is affected by various factors. This study is performed to analyze the behavior of earth retaining walls for new excavation contacting with existing excavation by comparing with the site measuring values before and after new excavation. On the base of observation, the distribution of strut axial forces is similar to that of ganeral earth retaining walls, but strut axial forces is increased by removal of existing earth anchors. When new excavation is performed contacting with existing excavation, the axial force of strut is decreased because of soil exclusion in the behind walls, but that force is increased after new exeavation. The analysis result show that the installation of strut in middle part makes a effect to not only 1 adjacent strut, but 3-5 adjacent struts. Also during new excavation strut axial forces is decreased by relaxation of total earth retaining wall system.

  • PDF

Pattern Analysis of Occlusal Contacts During Lateral Excursion Using T-scan III System (T-scan III 시스템을 이용한 하악 측방운동 시 교합접촉 양상의 분석)

  • Lee, Sang-Min
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • The objective of this study was to analyze occlusal contact pattern of 33 young adult males with normal occlusion during lateral excursion using T-scan III system which can measure the dynamic occlusion. Occlusal contact patterns were examined and categorized in non-working side disclusion point(more functionally acceptable position) not canine-to-canine position. Disclusion time, occlusal force, and occlusal force distribution ratio of upper canine at disclusion point during lateral excursion movement was also measured and compared among the groups divided according to contact patterns. The results showed that group function was clearly more dominant than canine guidance and other occlusal contact patterns different with existing patterns were found. There were significantly difference between groups in variables of T-scan measurement. T-scan III system is effective tools to analyze and evaluate occlusal contact patterns, disclusion time, occlusal force, and occlusal force distribution ratio of upper canine at disclusion point.

Optimum Yaw Moment Distribution with ESC and AFS Under Lateral Force Constraint on AFS (AFS 횡력 제한조건 하에서 ESC와 AFS를 이용한 최적 요 모멘트 분배)

  • Yim, Seongjin;Lee, Jungjae;Cho, Sung Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.527-534
    • /
    • 2015
  • This paper presents an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) under lateral force constraint on AFS. The control yaw moment is calculated using a sliding mode control. The tire forces generated by ESC and AFS are determined using weighted pseudo-inverse based control allocation (WPCA) in order to generate the control yaw moment. On a low friction road, AFS is not effective when the lateral tire forces of front wheels are easily saturated. To solve problem, the lateral force of AFS is limited to its maximum and the braking of ESC is applied with WPCA. To evaluate the effectiveness of the proposed method, a simulation was performed on the vehicle simulation package, $CarSim^{(R)}$. From the simulation, it was verified that the proposed method could enhance the maneuverability and lateral stability if the lateral force of AFS exceeds its maximum.

Laterally-Driven Electrostatic Repulsive-Force Microactuator (수평구동형 정전반발력 마이크로액추에이터)

  • Lee, Gi-Bang;Jo, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.424-433
    • /
    • 2001
  • We present a new electrostatic repulsive-force microactuator using a lateral repulsive force induced by an asymmetric distribution of electrostatic field. The lateral repulsive force has been characterized by a simple analytical equation, derived from a finite element simulation. A set of repulsive force polysilicon microactuators has been designed and fabricated by a 4-mask surface-micromachining process. Static and dynamic micromechanical behavior of the fabricated microactuators has been measured at the atmospheric pressure for a varying bias voltage. The static displacement of the fabricated microactuator, proportional to the square of the DC bias voltage, is obtained as 1.27 $\mu\textrm{m}$ for the DC bias voltage of 140V. The resonant frequency of the repulsive-force microactuator increases from 11.7 kHz to 12.7 kHz when the DC bias voltage increases from 60V to 140V. The measured quality-factor varies from 12 to 13 for the bias volatge range of 60V∼140V. The characteristics of the electrostatic repulsive-force have been discussed and compared and compared with those of the conventional electrostatic attractive-force.

A Study on the Lubrication Characteristics of Spool Valve with Spiral Groove (스파이럴 그루브가 가공된 스풀밸브의 윤활 특성 연구)

  • Hong, Sung-Ho;Son, Sang-Ik;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.303-314
    • /
    • 2012
  • In this research, spool valves with spiral grooves are suggested and their lubrication characteristics are investigated by numerical analysis. The three-dimensional flow field is obtained by solving the Navier-Stokes equations in dimensionless form, so that the performance variables such as lateral force, friction force and volume flow rate are determined. Also, the lubrication characteristics of spool valves with spiral grooves are compared with those with typical grooves under variable working conditions. It is shown that spool valves with spiral grooves can get better performance in aspect of mitigation of uneven pressure distribution surrounding spool. Moreover, it is found that the minimum distance between spool edges and grooves, the type of spiral groove, and the groove angle have noticeable effect on the lubrication characteristics.