• 제목/요약/키워드: laser heat treatment

검색결과 226건 처리시간 0.022초

Selective laser melting 방식으로 제작된 Inconel 718 합금의 수소취성에 미치는 응고셀 조직의 영향에 관한 연구 (A Study on the Effect of Solidification Substructure on the Hydrogen Embrittlement of Inconel 718 Fabricated by Selective Laser Melting)

  • 이동현
    • 열처리공학회지
    • /
    • 제35권4호
    • /
    • pp.203-210
    • /
    • 2022
  • In this study, hydrogen embrittlement in Inconel 718 fabricated by selective laser melting (SLM) was investigated. To focus on the effect of the SLM-induced solidification substructure, hydrogen embrittlement behavior of SLM as-built (SLM-AB) sample and that of conventionally produced (Con-S) sample were systematically compared. The detailed microstructural characterization showed that the SLM-AB sample exhibited a solidification substructure including a high density of dislocations and Laves phase, while the Con-S sample showed completely recrystallized grains without any substructure. Although the intrinsic strength in the SLM-AB sample was higher than the Con-S sample, the resistance to hydrogen embrittlement was higher in the SLM-AB sample. Nevertheless, a statistical analysis of the hydrogen-assisted cracks (HACs) revealed that the predominant HAC type of SLM-AB and Con-S samples was similar, i.e., intergranular HAC. The difference in the resistance to hydrogen embrittlement between the SLM-AB and Con-S samples were discussed in terms of the relation between the microstructural feature and its effect on hydrogen accumulation.

Microstructure and electrical properties of high power laser thermal annealing on inkjet printed Ag films

  • Yoon, Yo-Han;Yi, Seol-Min;Yim, Jung-Ryoul;Lee, Ji-Hoon;Joo, Young-Chang
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.36.2-36.2
    • /
    • 2009
  • In this work, the high power CW Nd:YAG laser has been used for thermal treatment of inkjet printed Ag films-involving eliminating organic additives (dispersant, binder, and organic solvent) of Ag ink and annealing Ag nanoparticles. By optimizing laser parameters, such as laser power and defocusing value, the laser energy can totally be converted to heat energy, which is used to thermal treatment of inkjet printed Ag films. This results in controlling the microstructures and the resistivity of films. We investigated the thermal diffusion mechanisms during laser annealing and the resulting microstructures. The impact of high power laser annealing on microstructures and electrical characteristic of inkjet printed Ag films is compared to those of the films annealed by a conventional furnace annealing. Focused ion beam (FIB) channeling image shows that the laser annealed Ag films have large columnar grains and dense structure (void free), while furnace annealed films have tiny grains and exhibit void formation. Due to these microstructural characteristics of laser annealed films, it has better electrical property (low resistivity) compared to furnace annealed samples.

  • PDF

대기중 나노초 펄스레이저 어블레이션의 수치계산 (Numerical simlation of nanosecond pulsed laser ablation in air)

  • 오부국;김동식
    • 한국레이저가공학회지
    • /
    • 제6권3호
    • /
    • pp.37-45
    • /
    • 2003
  • Pulsed laser ablation is important in a variety of engineering applications involving precise removal of materials in laser micromachining and laser treatment of bio-materials. Particularly, detailed numerical simulation of complex laser ablation phenomena in air, taking the interaction between ablation plume and air into account, is required for many practical applications. In this paper, high-power pulsed laser ablation under atmospheric pressure is studied with emphasis on the vaporization model, especially recondensation ratio over the Knudsen layer. Furthermore, parametric studies are carried out to analyze the effect of laser fluence and background pressure on surface ablation and the dynamics of ablation plume. In the numerical calculation, the temperature, pressure, density, and vaporization flux on a solid substrate are obtained by a heat-transfer computation code based on the enthalpy method. The plume dynamics is calculated considering the effect of mass diffusion into the ambient air and plasma shielding. To verify the computation results, experiments for measuring the propagation of a laser induced shock wave are conducted as well.

  • PDF

The Effect of an Optical Clearing Agent on Tissue Prior to 1064-nm Laser Therapy

  • Youn, Jong-In
    • Medical Lasers
    • /
    • 제10권3호
    • /
    • pp.146-152
    • /
    • 2021
  • Background and Objectives Although lasers have been widely applied in tissue treatment, the light penetration depth in tissues is limited by the tissue turbidity and affected by its absorption and scattering characteristics. This study investigated the effect of using an optical clearing agent (OCA) on tissue to improve the therapeutic effect of 1064 nm wavelength laser light by reducing the heat generated on the skin surface and increasing the penetration depth. Materials and Methods A diode laser (λ = 1064 nm) was applied to a porcine specimen with and without OCA to investigate the penetration depth of the laser light and temperature distribution. A numerical simulation using the finite element method was performed to investigate the temperature distribution of the specimen compared to ex-vivo experiments using a thermocouple and double-integrating sphere to measure the temperature profile and optical properties of the tissue, respectively. Results Simulation results showed a decrease in tissue surface temperature with increased penetration depth when the OCA was applied. Furthermore, both absorption and scattering coefficients decreased with the application of OCA. In ex-vivo experiments, temperatures decreased for the tissue surface and the fat layer with the OCA, but not for the muscle layer. Conclusion The use of an OCA may be helpful for reducing surface heat generation and enhance the light penetration depth in various near-infrared laser treatments.

High power CO$_{2}$laser beam welding of ASIA 316 stainless steel

  • 김재도;조용무
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1991년도 춘계학술대회 논문집
    • /
    • pp.321-327
    • /
    • 1991
  • High power laser beams are used in a wide variety of materials processing applications such as cutting, welding, drilling and surface treatment. The CO$\sub$2/ laser is increasingly used in laser beam welding because of the highly potential advantages. High power laser welding is a high energy density, no filler metals and low heat input process to join metals. As the comparison with the conventiona welding, precision work and good fit-up to join the metals are required and maintenance is expensive at present. The principal variables of laser beam welding are the laser beam power, travel speed and bean spot size. The penetration depth during laser beam welding is directly related to the power density of the laser beam. Generally, for a constant beam size, the penetration depth increases with increasing laser beam power.

레이저를 이용한 재료가공 (Material Processing by Laser)

  • 황경현;이성국
    • 한국광학회지
    • /
    • 제1권1호
    • /
    • pp.98-106
    • /
    • 1990
  • Lasers are used increasingly for specialized engineering applications such as drilling, profile cutting, welding and surface heat-treatment(hardening, alloying, annealing0 of metals and non-metals. The most important characteristics of lasers used for these materials-processing applications are reviewed, with special emphasis on the importance of the controlled heating process. In addition to these processes, some optical devices and supplementary equipment used in laser processing are introduced. Finally, some examples shows the wide variety of laser capability for substitution of traditional materials processing.

  • PDF

저출력레이저조사와 염증성 자극물질이 치은섬유아세포의 유전자 발현에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Effect of Low Level Laser and Some Cytokines on Gene Expression of Human Gingival Fibroblasts)

  • Jung-Min Kim;Keum-Back Shin
    • Journal of Oral Medicine and Pain
    • /
    • 제19권2호
    • /
    • pp.57-71
    • /
    • 1994
  • Gingival fibroblasts were cultured and subjected to the test of Northern blot analysis for the demonstration of various mRNA expression in response to the low level laser treatment. For duplication of in vivo. Wound healing process, fibroblasts were pretreated with proinflammatory cytokine interleukin-1$\beta$(IL-1$\beta$) or mitogenic substance phorbol 12-myristate 13-acetate(PMA) prior to laser irradiation. The results were as follows : 1. By the laser irradiation, the gene expression of collagen type I was markedly increased I n gingival fibroblasts, especially in the case of PMA pretreatment. The gene expression of collagen type IV, however, was not only affected by laser irradiation but also by chemical cell stimulation. 2. Oncogene v-myc expression was affected by both laser irradiation and IL-1$\beta$ or PMA stimulation, But v-fos gene expression was not detected in any case of this experimental system. 3. Heat shock gene(Hsp 70)was expressed constiutively, but slightly increased by laser irradiation. 4. mRNA of fibroblast growth factor(FGF) was induced by both laser irradiation and IL-1$\beta$ or PMA treatment.

  • PDF

화력발전용 슈퍼 듀플렉스 스테인리스 강 조관재의 용접 후 열처리 조건이 국부부식 저항성에 미치는 영향 (Effects of post weld heat treatment conditions on localized corrosion resistance of super duplex stainless steel tube used for thermal power plant applications)

  • 이준호;박진성;조동민;홍승갑;김성진
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.248-259
    • /
    • 2021
  • This study examined the influence of post weld heat treatment (PWHT) conditions on corrosion behaviors of laser-welded super duplex stainless steel tube. Due to the high cooling rate of laser welding, the phase fraction of ferrite and austenite in the weld metal became unbalanced significantly. In addition, the Cr2N particles were precipitated adjacent to the fusion line, which can be susceptible to the localized corrosion. On the other hand, the phase fraction in the weld metal was restored at a ratio of 5:5 when exposed to temperatures above 1060 ℃ during the post weld heat treatment. Nevertheless, the high beltline speed during the PWHT, leading to the insufficient cooling rate, caused a precipitation of σ phase at the interface between ferrite/austenite in both weld metal and base metal. This resulted in the severe corrosion damages and significant decrease in critical pitting temperature (CPT), which was even lower than that measured in as-welded condition. Moreover, the fraction of σ phase in the center region of post weld heat treated steel tube was obtained to be higher than in the surface region. These results suggest that the PWHT conditions for the steel tube should be optimized to ensure the high corrosion resistance by excluding the precipitation of σ phase even in center region.

레이저 표면처리된 Nickel-Base 합금의 공식 저항성 연구 (A Study on the Pitting Corrosion Resistance of Laser Surface Treated Nickel-Base Alloy)

  • 송명호;김용규
    • 한국재료학회지
    • /
    • 제9권2호
    • /
    • pp.217-225
    • /
    • 1999
  • The effect on the pitting corrosion resistance of laser welding and surface treatment developed as a repair method of stream generator tubing material that was a major component of primary system at nuclear power plant was observed. Some heat-treated Alloy 600 tubing materials used at domestic nuclear power plants were laser-surface observed. Some heat-treated Alloy 600 tubing materials used at domestic nuclear power plants were laser-surface melted and the microstructural characteristics were examined. The pitting corrosion resistance was examined through Ep(pitting potential) and degree of pit generation by means of the electrochemical tests and the immersion tests respectively. The pit formation characteristics were investigated through microstructural changes and the pit initiation site and pit morphology. The test results showed that the pitting corrosion resistances was increased in the order of the followings; sensitized Alloy 600, solution annealed alloy600, and laser surface melted Alloy 600. Pits were initiated preferably at Ti-containing inclusions and their surroundings in all tested specimens and it is believed that higher pitting resistance of laser-surface treated Alloy 600 was caused by fine, homogeneous distribution of non-soluble inclusions, the disappearance of grain boundary, and the formation of dense, stable oxide film. The major element of corrosion products filled in the pit was Cr. On the other hand, Fe was enriched in the deposit formed on the pit.

  • PDF

감광성유리를 이용한 마이크로머시닝 기술 (Micromachining technology using photosensitive glass)

  • 조수제
    • 한국레이저가공학회지
    • /
    • 제14권1호
    • /
    • pp.25-29
    • /
    • 2011
  • Micromachining of photosensitive glass by UV exposure, heat treatment, and etching processes is reported. Like photoresist, the photosensitive glass is also classified into positive and negative types by development characteristics. For the positive type, the exposed area is crystallized and etched away during the etching process in HF solution, whereas the unexposed area is crystallized and etched away for the negative type. The crystallized area of the photosensitive glass has an etch rate approximately 30~100 times faster than that of the amorphous area so that it becomes possible to fabricate microstructures in the glass. Based on the unique properties of glass such as high optical transparency, electrical insulation, and chemical/thermal stability, the glass micromachining technique introduced in this work could be widely applied to various devices in the fields of electronics, bio engineering, nanoelectonics and so on.

  • PDF