DOI QR코드

DOI QR Code

A Study on the Effect of Solidification Substructure on the Hydrogen Embrittlement of Inconel 718 Fabricated by Selective Laser Melting

Selective laser melting 방식으로 제작된 Inconel 718 합금의 수소취성에 미치는 응고셀 조직의 영향에 관한 연구

  • Lee, Dong-Hyun (Department of Materials Science and Engineering, Chungnam National University)
  • 이동현 (충남대학교 신소재공학과)
  • Received : 2022.07.08
  • Accepted : 2022.07.28
  • Published : 2022.07.30

Abstract

In this study, hydrogen embrittlement in Inconel 718 fabricated by selective laser melting (SLM) was investigated. To focus on the effect of the SLM-induced solidification substructure, hydrogen embrittlement behavior of SLM as-built (SLM-AB) sample and that of conventionally produced (Con-S) sample were systematically compared. The detailed microstructural characterization showed that the SLM-AB sample exhibited a solidification substructure including a high density of dislocations and Laves phase, while the Con-S sample showed completely recrystallized grains without any substructure. Although the intrinsic strength in the SLM-AB sample was higher than the Con-S sample, the resistance to hydrogen embrittlement was higher in the SLM-AB sample. Nevertheless, a statistical analysis of the hydrogen-assisted cracks (HACs) revealed that the predominant HAC type of SLM-AB and Con-S samples was similar, i.e., intergranular HAC. The difference in the resistance to hydrogen embrittlement between the SLM-AB and Con-S samples were discussed in terms of the relation between the microstructural feature and its effect on hydrogen accumulation.

Keywords

Acknowledgement

이 연구는 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구(P0002019, 2022년 산업전문인력역량강화사업)입니다.

References

  1. A. Epishin, T. Link, Philos. Mag., 84 (2004) 1979. https://doi.org/10.1080/14786430410001663240
  2. T. M. Pollock and S. Tin : J. Propuls. Power, 22 (2006) 361. https://doi.org/10.2514/1.18239
  3. Z. Tarzimoghadam, D. Ponge, J. Klower, and D. Raabe : Acta Mater., 128 (2017) 365. https://doi.org/10.1016/j.actamat.2017.02.059
  4. R. S. Dutta : J. Nucl. Mater., 393 (2009) 343. https://doi.org/10.1016/j.jnucmat.2009.06.020
  5. H. Barthelemy : Int. J. Hydrogen Energy, 37 (2012) 17364. https://doi.org/10.1016/j.ijhydene.2012.04.121
  6. M. L. Martin, B. P. Somerday, R. O. Ritchie, P. Sofronis, and I. M. Robertson : Acta Mater., 60 (2012) 2739. https://doi.org/10.1016/j.actamat.2012.01.040
  7. Z. Zhang, G. Obasi, R. Morana, and M. Preuss : Acta Mater., 113 (2016) 272. https://doi.org/10.1016/j.actamat.2016.05.003
  8. F. Han, S. He, M. Liu, and X. T. Zhou : Mater. Sci. Eng. A, 733 (2018) 291. https://doi.org/10.1016/j.msea.2018.07.077
  9. X. Lu, D. Wang, D. Wan, Z. B. Zhang, N. Kheradmand, and A. Barnoush : Acta Mater., 179 (2019) 36. https://doi.org/10.1016/j.actamat.2019.08.020
  10. Y. M. Wang, T. Voisin, J. T. McKeown, J. Ye, N. P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T. T. Roehling, R. T. Ott, M. K. Santala, P. J. Depond, M. J. Matthews, A. V. Hamza, and T. Zhu : Nat. Mater., 17 (2018), 63. https://doi.org/10.1038/nmat5021
  11. L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y. L. Chiu, J. Li, Z. Zhang, Q. Yu, and Z. Shen : Mater. Today, 21 (2018) 354. https://doi.org/10.1016/j.mattod.2017.11.004
  12. J. Lin, F. Chen, F. Liu, D. Xu, J. and Gao, X : Tang, Mater. Chem. Phys., 250 (2020) 123038. https://doi.org/10.1016/j.matchemphys.2020.123038
  13. Y. -K. Kim, J. -Y. Suh, and K. -A. Lee : Mater. Sci. Eng. A, 796 (2020) 140039. https://doi.org/10.1016/j.msea.2020.140039
  14. D. -H. Lee, B. Sun, S. Lee, D. Ponge, E. A. Jagle, and D. Raabe : Mater. Sci. Eng. A, 803 (2021) 140499. https://doi.org/10.1016/j.msea.2020.140499
  15. J. -M. Park, Y. Zhao, T. Voisin, D. -H. Lee, S. Komazaki, Y. Ko, D. -I. Kim, J. -Y. Suh, H. N. Han, Y. M. Wang, U. Ramamurty, and J. Jang : Scr. Mater., 194 (2021) 113718. https://doi.org/10.1016/j.scriptamat.2020.113718
  16. X. Li, Q. Li, T. Wang, and J. Zhang : Corros. Sci., 160 (2019) 108171. https://doi.org/10.1016/j.corsci.2019.108171
  17. Kevinsanny, S. Okazaki, O. Takakuwa, Y. Ogawa, Y. Funakoshi, H. Kawashima, S. Matsuoka, and H. Matsunaga : Int. J. Fatigue, 139 (2020) 105740. https://doi.org/10.1016/j.ijfatigue.2020.105740
  18. H. Xiao, S. Li, X. Han, J. Mazumder, and L. Song : Mater. Des., 122 (2017) 330. https://doi.org/10.1016/j.matdes.2017.03.004
  19. X. Li, J. J. Shi, C. H. Wang, G. H. Cao, A. M. Russell, Z. J. Zhou, C. P. Li, and G. F. Chen : J. Alloys Compd., 764 (2018) 639. https://doi.org/10.1016/j.jallcom.2018.06.112
  20. H. K. Birnbaum and P. Sofronis : Mater. Sci. Eng. A, 176 (1994) 191. https://doi.org/10.1016/0921-5093(94)90975-X
  21. Y. Zhao, D. -H. Lee, M. -Y. Seok, J. -A. Lee, M. P. Phaniraj, J. -Y. Suh, H. -Y. Ha, J. -Y. Kim, U. Ramamurty, and J. Jang : Scr. Mater., 135 (2017) 54. https://doi.org/10.1016/j.scriptamat.2017.03.029
  22. J. Chene and A. M. Brass : Scr. Mater., 40 (1999) 537. https://doi.org/10.1016/S1359-6462(98)00451-5
  23. M. Dadfarnia, M. L. Martin, A. Nagao, P. Sofronis, and I. M. Robertson : J. Mech. Phys. Solids, 78 (2015) 511. https://doi.org/10.1016/j.jmps.2015.03.002
  24. M. Nagumo, K. Takai, and N. Okuda : J. Alloys Compd., 293-295 (1999) 310. https://doi.org/10.1016/S0925-8388(99)00322-9
  25. C. J. McMahon : Eng. Fract. Mech., 68 (2001) 773. https://doi.org/10.1016/S0013-7944(00)00124-7
  26. M. Koyama, H. Springer, S. V. Merzlikin, K. Tsuzaki, E. Akiyama, and D. Raabe : Int. J. Hydrogen Energy, 39 (2014) 4634. https://doi.org/10.1016/j.ijhydene.2013.12.171
  27. A. Macadre, N. Nakada, T. Tsuchiyama, and S. Takaki : Int. J. Hydrogen Energy, 40 (2015) 10697. https://doi.org/10.1016/j.ijhydene.2015.06.111