• Title/Summary/Keyword: large-scale systems

Search Result 1,879, Processing Time 0.031 seconds

Modified algorithmic LMI design with applications in aerospace vehicles

  • Chen, Tim;Gu, Anzaldi;Hsieh, Chiayen;Xu, Giustolisi;Wang, Cheng;Chen, C.Y.J.
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.69-85
    • /
    • 2021
  • A modified fuzzy mechanical control of large-scale multiple time delayed dynamic systems in states is considered in this paper. To do this, at the first level, a two-step strategy is proposed to divide a large system into several interconnected subsystems. As a modified fuzzy control command, the next was received as feedback theory based on the energetic function and the LMI optimal stability criteria which allow researchers to solve this problem and have the whole system in asymptotically stability. Modeling the Fisher equation and the temperature gauge for high-speed aircraft and spacecraft shows that the calculation method is efficient.

Damage propagation for aircraft structural analysis of composite materials

  • Hung, C.C.;Nguyen, T.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.2
    • /
    • pp.149-167
    • /
    • 2022
  • A Modified fuzzy mechanical control of large-scale multiple time delayed dynamic systems in states is considered in this paper. To do this, at the first level, a two-step strategy is proposed to divide a large system into several interconnected subsystems. And we focus on the damage propagation for aircraft structural analysis of composite materials. As a modified fuzzy control command, the next was received as feedback theory based on the energetic function and the LMI optimal stability criteria which allow researchers to solve this problem and have the whole system in asymptotically stability. And we focus on the results which shows the high effective by the proposed theory utilized for damage propagation for aircraft structural analysis of composite materials.

A Study on the Control Method of Customer Voltage Variation in Distribution System with PV Systems

  • Kim, Byung-ki;Choi, Sung-sik;Wang, Yong-peel;Kim, Eung-sang;Rho, Dae-seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.838-846
    • /
    • 2015
  • This paper deals with the modified modeling of PV system based on the PSCAD/EMTDC and optimal control method of customer voltages in real distribution system interconnected with the photovoltaic (PV) systems. In order to analyze voltage variation characteristics, the specific modeling of PV system which contains the theory of d-q transformation, current-control algorithm and sinusoidal PWM method is being required. However, the conventional modeling of PV system can only perform the modeling of small-scale active power of less than 60 [kW]. Therefore, this paper presents a modified modeling that can perform the large-scale active power of more than 1 [MW]. And also, this paper proposes the optimal operation method of step voltage regulator (SVR) in order to solve the voltage variation problem when the PV systems are interconnected with the distribution feeders. From the simulation results, it is confirmed that this paper is effective tool for voltage analysis in distribution system with PV systems.

Analysis of operation performance of PHILS-based superconducting current limiter connected to MVDC system

  • Seok-Ju Lee;Jae In Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.54-59
    • /
    • 2023
  • In this paper, we analyze experimental results by applying the PHILS model to a lab-scale superconducting current limiter system for its actual application in medium-voltage direct current (MVDC) systems. Superconducting current limiters exhibit effective current-limiting performance in circuit breaker operations, particularly in limiting large fault currents within a short period, addressing the challenges posed by the increasing use of renewable energy and the integration of DC medium-voltage distribution systems. The development of such superconducting current limiters faces various technical and cost disadvantages, especially when applying a medium-voltage 35kV level system, which is intended for future introduction. The proven lab-scale superconducting current limiter system and the PHILS model are combined and integrated into the actual system. Our plan involves analyzing the limiter's performance, assessing its impact on the system, and preparing for its application in future medium-voltage systems. Utilizing RTDS, a simulation was conducted by connecting actual scaled-down equipment and systems, with the analysis results presented.

Recent instrumentation system safety instrumentation and man-machine interface

  • Satake, Noboru
    • 전기의세계
    • /
    • v.25 no.6
    • /
    • pp.8-13
    • /
    • 1976
  • The industrial processes have become complicated on a large scale bacause of improvement of productivity, research of efficiency, and shortage of locations to be suited for foundation of factories. Consequently, the instrumentation and control systems for operating these industrial processes have also been highly improved with the development of mass information means. In order to operate these large-sized and complicated industrial processes safely, the man-machine interface for correspondence between man and machines and the instrumentation system regarding process fault processing are playing an important role increasingly. This paper describes recent instrumentation system in the water purifying plant as an example of these industrial processes, and covers both man-machine interface and process fault processing. The annual water supply quantity and diffusion were 2, 000, 000, 000m$^{3}$ and 25.0% in 1950 inJapan, but they amounted to 12, 000, 000, 000m$^{3}$ and 86.7% in 1974, respectively. The demands of water will increase incessantly, while it becomes gradually difficult to secure water sources. Accordingly, local self-governing bodies such as municipal cooperation, towns, and villages often construct a large-scale water purifying plant at one place in common, as required, without constructing respective plants independently. It is an absolute requirement for the water purifying plant to avoid stopping water supply to fullfil its social responsibility from the viewpoints of its public utility enterprise, and also it has gradually become difficult to secure skilled operators enough to cover such water purifying plants that are additionally provided in various districts. Thus, the importance of the man-machine interface for assuring safety operation of the water purifying plant irrespective of unskillfulness of operators as well as the instrumentation system regarding process fault processing, or, safety instrumentation, is more and more increasing as the water purifying plants are on a large scale.

  • PDF

Container-based Cluster Management System for User-driven Distributed Computing (사용자 맞춤형 분산 컴퓨팅을 위한 컨테이너 기반 클러스터 관리 시스템)

  • Park, Ju-Won;Hahm, Jaegyoon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.9
    • /
    • pp.587-595
    • /
    • 2015
  • Several fields of science have traditionally demanded large-scale workflow support, which requires thousands of central processing unit (CPU) cores. In order to support such large-scale scientific workflows, large-capacity cluster systems such as supercomputers are widely used. However, as users require a diversity of software packages and configurations, a system administrator has some trouble in making a service environment in real time. In this paper, we present a container-based cluster management platform and introduce an implementation case to minimize performance reduction and dynamically provide a distributed computing environment desired by users. This paper offers the following contributions. First, a container-based virtualization technology is assimilated with a resource and job management system to expand applicability to support large-scale scientific workflows. Second, an implementation case in which docker and HTCondor are interlocked is introduced. Lastly, docker and native performance comparison results using two widely known benchmark tools and Monte-Carlo simulation implemented using various programming languages are presented.

Investigation of flexural behavior of a prestressed girder for bridges using nonproprietary UHPC

  • Pham, Hoa D.;Khuc, Tung;Nguyen, Tuan V.;Cu, Hung V.;Le, Danh B.;Trinh, Thanh P.
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.71-79
    • /
    • 2020
  • Ultra-high-performance concrete (UHPC) is recognized as a promising material in future civil engineering projects due to its outstanding mechanical and durability properties. However, the lack of local UHPC materials and official standards, especially for prestressed UHPC structures, has limited the application of UHPC. In this research, a large-scale prestressed bridge girder composed of nonproprietary UHPC is produced and investigated. This work has two objectives to develop the mixing procedure required to create UHPC in large batches and to study the flexural behavior of the prestressed girder. The results demonstrate that a sizeable batch of UHPC can be produced by using a conventional concrete mixing system at any precast factory. In addition, incorporating local aggregates and using conventional mixing systems enables regional widespread use. The flexural behavior of a girder made by this UHPC is investigated including flexural strength, cracking pattern and development, load-deflection curve, and strain and neutral axis behaviors through a comprehensive bending test. The experimental data is similar to the theoretical results from analytical methods based on several standards and recommendations of UHPC design.

IBAD-MgO technology for coated conductors

  • Jo, William
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.3
    • /
    • pp.1-5
    • /
    • 2016
  • Ion-beam assisted deposition (IBAD) technology has been successfully applied to high-temperature superconductor coated conductors (CC) as textured substrates. Since the coated conductors were proposed as a potential framework for utilizing the superior transport characteristics of $YBa_2Cu_3O_7$ and related cuprate oxides, several methods including rolling-assisted bi-axial textured substrates (RABiTS) and inclined substrate deposition (ISD), as well as IBAD, have been attempted. As of 2016, most companies that are trying to commercialize CC adapt IBAD technology except for American Superconductors who use RABiTS predominantly. For the materials in the IBAD process, initial efforts to use yttria-stabilized zirconia (YSZ) or related fluorites in Fujikura in Japan have quickly given way to MgO which technique was developed by Stanford University in the USA. In this review, we present a historical overview of IBAD technology, in particular, for the application of CC. We describe the key scientific understanding of nucleation, the texturing mechanism, and the growth of large bi-axial grains and discuss some potential new IBAD materials and systems for large-scale production.

Digital Logic Extraction from Quantum-dot Cellular Automata Designs (Quantum-dot Cellular Automata 회로로부터 디지털 논리 추출)

  • Oh, Youn-Bo;Lee, Eun-Choul;Kim, Kyo-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.139-141
    • /
    • 2006
  • Quantum-dot Cellular Automata (QCA) is one of the most promising next generation nano-electronic devices which will inherit the throne of CMOS which is the domineering implementation technology of large scale low power digital systems. In late 1990s, the basic operations of the QCA cell were already demonstrated on a hardware implementation. Also, design tools and simulators were developed. Nevertheless, its design technology is not quite ready for ultra large scale designs. This paper proposes a new approach which enables the QCA designs to inherit the verification methodologies and tools of CMOS designs, as well. First, a set of disciplinary rules strictly restrict the cell arrangement not to deviate from the predefined structures but to guarantee the deterministic digital behaviors. After the gate and interconnect structures of the QCA design are identified, the signal integrity requirements including the input path balancing of majority gates, and the prevention of the noise amplification are checked. And then the digital logic is extracted and stored in the OpenAccess common engineering database which provides a connection to a large pool of CMOS design verification tools. Towards validating the proposed approach, we designed a 2-bit QCA adder. The digital logic is extracted, translated into the Verilog net list, and then simulated using a commercial software.

  • PDF

Low-Complexity Massive MIMO Detectors Based on Richardson Method

  • Kang, Byunggi;Yoon, Ji-Hwan;Park, Jongsun
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.326-335
    • /
    • 2017
  • In the uplink transmission of massive (or large-scale) multi-input multi-output (MIMO) systems, large dimensional signal detection and its hardware design are challenging issues owing to the high computational complexity. In this paper, we propose low-complexity hardware architectures of Richardson iterative method-based massive MIMO detectors. We present two types of massive MIMO detectors, directly mapped (type1) and reformulated (type2) Richardson iterative methods. In the proposed Richardson method (type2), the matrix-by-matrix multiplications are reformulated to matrix-vector multiplications, thus reducing the computational complexity from $O(U^2)$ to O(U). Both massive MIMO detectors are implemented using a 65 nm CMOS process and compared in terms of detection performance under different channel conditions (high-mobility and flat fading channels). The hardware implementation results confirm that the proposed type1 Richardson method-based detector demonstrates up to 50% power savings over the proposed type2 detector under a flat fading channel. The type2 detector indicates a 37% power savings compared to the type1 under a high-mobility channel.