Proceedings of the KIEE Conference (대한전기학회:학술대회논문집)
- 2006.10c
- /
- Pages.139-141
- /
- 2006
Digital Logic Extraction from Quantum-dot Cellular Automata Designs
Quantum-dot Cellular Automata 회로로부터 디지털 논리 추출
- Published : 2006.10.27
Abstract
Quantum-dot Cellular Automata (QCA) is one of the most promising next generation nano-electronic devices which will inherit the throne of CMOS which is the domineering implementation technology of large scale low power digital systems. In late 1990s, the basic operations of the QCA cell were already demonstrated on a hardware implementation. Also, design tools and simulators were developed. Nevertheless, its design technology is not quite ready for ultra large scale designs. This paper proposes a new approach which enables the QCA designs to inherit the verification methodologies and tools of CMOS designs, as well. First, a set of disciplinary rules strictly restrict the cell arrangement not to deviate from the predefined structures but to guarantee the deterministic digital behaviors. After the gate and interconnect structures of the QCA design are identified, the signal integrity requirements including the input path balancing of majority gates, and the prevention of the noise amplification are checked. And then the digital logic is extracted and stored in the OpenAccess common engineering database which provides a connection to a large pool of CMOS design verification tools. Towards validating the proposed approach, we designed a 2-bit QCA adder. The digital logic is extracted, translated into the Verilog net list, and then simulated using a commercial software.