• Title/Summary/Keyword: large square

Search Result 959, Processing Time 0.033 seconds

Relationships between Meteorological Factors and Growth and Yield of Alisma plantago L. in Seungju Area (승주지방(昇州地方)에서 기상요인(氣象要因)과 택사(澤瀉) 생육(生育) 및 수량(收量)과의 관계(關係))

  • Kwon, Byung-Sun;Lim, June-Taeg;Chung, Dong-Hee;Hwang, Jong-Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 1994
  • This study was conducted to investigate the relationships between yearly variations of climatic factors and yearly variations of productivity in Alisma plantago L. In addition, correlation coefficients among yield and yield components were estimated. The data of yield and yield components were collected from the Statistical Year Book of Seungju province, Reserach Report of Seungju Extension Station of Rural Development Administration, and farmers for 10 years from 1983 to 1992. The meteorological data gathered at the Seungju Weather Station for the same period were used to find out the relationships between climatic factors and productivity. Yearly variation of the amount of precipitation in October and the minimum temperature in November were large with coefficients of variation(C.V.) of 106.44, 144.08%, respectively, but the variation of the average temperature, maximum temperature, minimum temperature from July to September were relatively small. Fresh weight and dry weight of roots vary greatly with C. V. of 30.62, 31.85%, respectivly. Plant height and stem length show more or less small C. V. of 5.51, 6. 26%, respectively and leaf width, leaf length, number of stems and root diameter show still less variation. Correlation coefficients between maximum temperature in November and plant height, stem diamter, number of stems, root diamter and dry weight of roots are positively significant at the 5% level. There are high signficant positive correlations observed, between yield and yield components. The maximum temperature would be used as a predictive variable for the estimation of dry weight of roots and number of stems. Simple linear regression equations by the least square method are estimated for number of stems $(Y_1)$ and the maximum temperature in November(X) as $Y_1=4.7114+0.5333\;X\;(R^2=0.4410)$, and for dry weight of roots$(Y_2)$ and the maximum temperature in November(X) as $Y_2=55.0405+14.3233\;X\;(R^2=0.4511)$

  • PDF

A Study on the Spatial and Visual Composition of Yi Ung-Jae's Old House, Dundeok-ri (둔덕리 이웅재고가(李雄宰古家)의 공간 및 경관 구성적 특성에 관한 연구)

  • Rho, Jae-Hyun;Lee, Jung-Han
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.2
    • /
    • pp.60-76
    • /
    • 2020
  • The purpose of this study was to examine the spatial and visual arrangement characteristics of Imsil Yi Ung-jae's old house's spatial and visual aspects in order to discover the value of landscape and traditional house garden. The results of this study are as follows. Dongchon-village in Dundeok-ri, where old house is located, is a typical form of with "Back to the mountain and facing the water(背山臨水)", and is located in the north of the three streams of water, forming a Jeonchaghugwan(前窄後寬). Dongchon Village, which has a traditional scenic spot between Danguidae(丹丘臺) and Samgyeseokmun(三溪石門), is understood to be the main street of Nojeokbong Peak and Gyegwanbong Peak, which is Ansan(案山), where the "A centipede flying in the sky(飛天蜈蚣形)". Yi Ung-jae's old house is the oldest existing high-priced house in the North Jeolla region and the closing price of a royal family of the Joseon Dynasty, which was arranged by Chunseongjeong(春城正), Yi Dam-son(李聃孫) in the mid-16C. The Japanese Invasion of Korea in 1592 and Japanese colonial era, the loyalty of the gate quarters, the filial piety of the gate quarters, and the faithfulness of the tablet(扁額) and Juryeons(柱聯) are enough to contribute to the rise of the value of a physical house. The men's quarters(Sarangchae), which are placed on a high-pocket or a layout without going against the sloping terrain, have the effect of making the distance as far as possible, enhancing its dignity and hierarchy as a royal building. In addition, the entrance to the main quarters(Anchae) through the four pillar gates(四柱門), the extensive support and the appropriation of the Chaewon(vegetable garden), and the official base for the Anchae are very unique compared to the general nobility. However, in the context of the postwar relationship, the shrine seeks to realize Confucian ideals while harmonizing with nature by arranging wide sponsorships around it. On the other hand, it is confirmed that there was a pond in the form of a circle in a square(方池圓島型) with a relatively large area, which is now disturbed and damaged. Written by the high priced planting species are sponsored pine trees, hackberry, persimmon trees, Japanese apricot flower, Ohmomiji, and plum tree in the side garden, as well as cotyledon trees in the outside garden. However, although flower bed(花階), which is built on the stone axis, is a place that clearly shows the expensive garden, it seems to have lost the texture of the plant due to the extremely high variety of species and the splendor that does not match the plant landscape of the flower world. Yi Ung-jae's old house is highly valuable as it is a portrait house of a prince of the blood in the mid-Joseon Dynasty. Based on these findings, this study proposed a plan to improve the management of high prices that could be met.

Least-Square Fitting of Intrinsic and Scattering Q Parameters (최소자승법(最小自乘法)에 의(衣)한 고유(固有) Q와 산란(散亂) Q의 측정(測定))

  • Kang, Ik Bum;McMechan, George A.;Min, Kyung Duck
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.557-561
    • /
    • 1994
  • Q estimates are made by direct measurements of energy loss per cycle from primary P and S waves, as a function of frequency. Assuming that intrinsic Q is frequency independent and scattering Q is frequency dependent over the frequencies of interest, the relative contributions of each, to a total observed Q, may be estimated. Test examples are produced by computing viscoelastic synthetic seismograms using a pseudo spectral solution with inclusion of relaxation mechanisms (for intrinsic Q) and a fractal distribution of scatterers (for scattering Q). The composite theory implies that when the total Q for S-waves is smaller than that for P-waves (the usual situation), intrinsic Q is dominating; when it is larger, scattering Q is dominating. In the inverse problem, performed by a global least squares search, intrinsic $Q_p$ and $Q_s$ estimates are reliable and unique when their absolute values are sufficiently low that their effects are measurable in the data. Large $Q_p$ and $Q_s$ have no measurable effect and hence are not resolvable. Standard deviation of velocity $({\sigma})$ and scatterer size (A) are less unique as they exhibit a tradeoff as predicted by Blair's equation. For the P-waves, intrinsic and scattering contributions are of approximately the same importance, for S-waves, the intrinsic contributions dominate.

  • PDF

A Basic Study on the Characteristics of the Modern Garden in Incheon During the Opening Period - Focused on Rikidake's Villa - (개항기 인천 근대정원의 조영특성에 관한 기초연구 - 리키다케 별장을 중심으로 -)

  • Jin, Hye-Young;Shin, Hyun-Sil
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.3
    • /
    • pp.83-91
    • /
    • 2020
  • The purpose of this study is to examine the process of formation of modern gardens. Based on the analysis of the process of formation and transformation of the Jemulpo in Incheon and the details of the modern garden construction. The results are as follows; First, the formation of the Incheon Residence Site began in 1876 with the signing of the Joseon-Japan Treaty. Jemulpo used to be a desolate fishing village in the past, but after its opening in 1881, the Japanese settlement, Chinese settlement, and the general foreign settlement were formed. After that, Japan reclaimed the southern mudflats and expanded the theire settlement area, and advanced to the Joseon area(currently Sinheung-dong). In Japanese colonial era, modern Japanese urban landscapes were transplanted into the settlement area, centering on the Japanese modern gardens were distributed in the area around the center of the settlement area. Second, after examining the process of creating the garden for the Rikidake villa, Japanese Rikidake purchased a site for an orchard in Uri-tang, who was a major landowner in Incheon, to create the garden. At the time of Rikidake's residence, the garden was very large, measuring about 3,000 pyeong, and after liberation, it was acquired by Incheon City and used as Yulmok Children's Library. It was known as a rich village at the time of the opening of the port, and a garden was located at the highest point in Yulmok-dong, making it easy to see the Incheon Port area. Also, a spot located about 300 meters away from Rikidake's rice mill may have affected the location selection. Third, today's Rikidake villa has a Japanese-style house on a trapezoidal site, with a garden of about 990 square meters on the south side. Currently, it is possible to enter from the south and from Yulmok Children's Park in the north, but in the past, the main direction of the house was to view the Incheon Port, settlement area, and the Rikidake Rice Mill, so the house was located in front of the garden. The garden is a multi-faceted style with stone lanterns, tombstones, garden stones, and trees placed on each side, and is surrounded by arboreal plants such as attention, strobe pine, and maple trees, as well as royal azaleas. The view from the inside of the house was secured through shrub-oriented vegetation around the house.

Estimation of Precipitable Water from the GMS-5 Split Window Data (GMS-5 Split Window 자료를 이용한 가강수량 산출)

  • 손승희;정효상;김금란;이정환
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.53-68
    • /
    • 1998
  • Observation of hydrometeors' behavior in the atmosphere is important to understand weather and climate. By conventional observations, we can get the distribution of water vapor at limited number of points on the earth. In this study, the precipitable water has been estimated from the split window channel data on GMS-5 based upon the technique developed by Chesters et al.(1983). To retrieve the precipitable water, water vapor absorption parameter depending on filter function of sensor has been derived using the regression analysis between the split window channel data and the radiosonde data observed at Osan, Pohang, Kwangiu and Cheju staions for 4 months. The air temperature of 700 hPa from the Global Spectral Model of Korea Meteorological Administration (GSM/KMA) has been used as mean air temperature for single layer radiation model. The retrieved precipitable water for the period from August 1996 through December 1996 are compared to radiosonde data. It is shown that the root mean square differences between radiosonde observations and the GMS-5 retrievals range from 0.65 g/$cm^2$ to 1.09 g/$cm^2$ with correlation coefficient of 0.46 on hourly basis. The monthly distribution of precipitable water from GMS-5 shows almost good representation in large scale. Precipitable water is produced 4 times a day at Korea Meteorological Administration in the form of grid point data with 0.5 degree lat./lon. resolution. The data can be used in the objective analysis for numerical weather prediction and to increase the accuracy of humidity analysis especially under clear sky condition. And also, the data is a useful complement to existing data set for climatological research. But it is necessary to get higher correlation between radiosonde observations and the GMS-5 retrievals for operational applications.

Assembly and Testing of a Visible and Near-infrared Spectrometer with a Shack-Hartmann Wavefront Sensor (샤크-하트만 센서를 이용한 가시광 및 근적외선 분광기 조립 및 평가)

  • Hwang, Sung Lyoung;Lee, Jun Ho;Jeong, Do Hwan;Hong, Jin Suk;Kim, Young Soo;Kim, Yeon Soo;Kim, Hyun Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.108-115
    • /
    • 2017
  • We report the assembly procedure and performance evaluation of a visible and near-infrared spectrometer in the wavelength region of 400-900 nm, which is later to be combined with fore-optics (a telescope) to form a f/2.5 imaging spectrometer with a field of view of ${\pm}7.68^{\circ}$. The detector at the final image plane is a $640{\times}480$ charge-coupled device with a $24{\mu}m$ pixel size. The spectrometer is in an Offner relay configuration consisting of two concentric, spherical mirrors, the secondary of which is replaced by a convex grating mirror. A double-pass test method with an interferometer is often applied in the assembly process of precision optics, but was excluded from our study due to a large residual wavefront error (WFE) in optical design of 210 nm ($0.35{\lambda}$ at 600 nm) root-mean-square (RMS). This results in a single-path test method with a Shack-Hartmann sensor. The final assembly was tested to have a RMS WFE increase of less than 90 nm over the entire field of view, a keystone of 0.08 pixels, a smile of 1.13 pixels and a spectral resolution of 4.32 nm. During the procedure, we confirmed the validity of using a Shack-Hartmann wavefront sensor to monitor alignment in the assembly of an Offner-like spectrometer.

Long-term forecasting reference evapotranspiration using statistically predicted temperature information (통계적 기온예측정보를 활용한 기준증발산량 장기예측)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1243-1254
    • /
    • 2021
  • For water resources operation or agricultural water management, it is important to accurately predict evapotranspiration for a long-term future over a seasonal or monthly basis. In this study, reference evapotranspiration forecast (up to 12 months in advance) was performed using statistically predicted monthly temperatures and temperature-based Hamon method for the Han River basin. First, the daily maximum and minimum temperature data for 15 meterological stations in the basin were derived by spatial-temporal downscaling the monthly temperature forecasts. The results of goodness-of-fit test for the downscaled temperature data at each site showed that the percent bias (PBIAS) ranged from 1.3 to 6.9%, the ratio of the root mean square error to the standard deviation of the observations (RSR) ranged from 0.22 to 0.27, the Nash-Sutcliffe efficiency (NSE) ranged from 0.93 to 0.95, and the Pearson correlation coefficient (r) ranged from 0.97 to 0.98 for the monthly average daily maximum temperature. And for the monthly average daily minimum temperature, PBIAS was 7.8 to 44.7%, RSR was 0.21 to 0.25, NSE was 0.94 to 0.96, and r was 0.98 to 0.99. The difference by site was not large, and the downscaled results were similar to the observations. In the results of comparing the forecasted reference evapotranspiration calculated using the downscaled data with the observed values for the entire region, PBIAS was 2.2 to 5.4%, RSR was 0.21 to 0.28, NSE was 0.92 to 0.96, and r was 0.96 to 0.98, indicating a very high fit. Due to the characteristics of the statistical models and uncertainty in the downscaling process, the predicted reference evapotranspiration may slightly deviate from the observed value in some periods when temperatures completely different from the past are observed. However, considering that it is a forecast result for the future period, it will be sufficiently useful as information for the evaluation or operation of water resources in the future.

Prediction of Expected Residual Useful Life of Rubble-Mound Breakwaters Using Stochastic Gamma Process (추계학적 감마 확률과정을 이용한 경사제의 기대 잔류유효수명 예측)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.158-169
    • /
    • 2019
  • A probabilistic model that can predict the residual useful lifetime of structure is formulated by using the gamma process which is one of the stochastic processes. The formulated stochastic model can take into account both the sampling uncertainty associated with damages measured up to now and the temporal uncertainty of cumulative damage over time. A method estimating several parameters of stochastic model is additionally proposed by introducing of the least square method and the method of moments, so that the age of a structure, the operational environment, and the evolution of damage with time can be considered. Some features related to the residual useful lifetime are firstly investigated into through the sensitivity analysis on parameters under a simple setting of single damage data measured at the current age. The stochastic model are then applied to the rubble-mound breakwater straightforwardly. The parameters of gamma process can be estimated for several experimental data on the damage processes of armor rocks of rubble-mound breakwater. The expected damage levels over time, which are numerically simulated with the estimated parameters, are in very good agreement with those from the flume testing. It has been found from various numerical calculations that the probabilities exceeding the failure limit are converged to the constraint that the model must be satisfied after lasting for a long time from now. Meanwhile, the expected residual useful lifetimes evaluated from the failure probabilities are seen to be different with respect to the behavior of damage history. As the coefficient of variation of cumulative damage is becoming large, in particular, it has been shown that the expected residual useful lifetimes have significant discrepancies from those of the deterministic regression model. This is mainly due to the effect of sampling and temporal uncertainties associated with damage, by which the first time to failure tends to be widely distributed. Therefore, the stochastic model presented in this paper for predicting the residual useful lifetime of structure can properly implement the probabilistic assessment on current damage state of structure as well as take account of the temporal uncertainty of future cumulative damage.

Temporal-Spatial Location of Dwelling Site in Asan Bay in the Neolithic Age (아산만지역(牙山灣地域) 신석기시대(新石器時代) 집자리의 시공적(時空的) 위치(位置))

  • Koo, Ja Jin
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.3
    • /
    • pp.26-47
    • /
    • 2009
  • This study examined dwelling site from among the sites of the Neolithic age found in the Asan Bay(牙山灣) area, and the temporal-spatial location and meaning of the dwelling site (settlement). The majority of the settlements in the area are of a square style but some coexist with rectangular-style settlements, which is noteworthy. The dwelling sites of the Neolithic age found in Asan Bay area are mostly located in a ridge of hilly areas, divided into gentle, low areas (20~50 meters above sea level) and relatively high areas (50~80 meters above the sea level). Although location strongly corresponded to the residents' subsistence and the technical levels within the culture, it likely was greatly affected by natural environment where they lived, as well. In examining radiocarbon dating results and the excavated artifacts, the settlements found in Asan Bay were determined to belong to the period II(3,500~3,000 B.C.) stated in the Relative Chronological table of Dwelling sites in the Neolithic age, written by the author. Said Dwelling sites are proven to have a close relationship with those found on the coast of Gyeonggi Province(京畿道) and in the Geum River(錦江) valley. This is deemed to be the result of expansion and interchange between Gyeonggi Province(京畿道) group and Geum River(錦江) valley group, who constituted the large settlements. Additionally, the Daecheon-ri type dwelling sites in the Geum River valley were verified to be the result of exchange, and spread to the Asan Bay area in the same era. Two forms of Dwelling sites coexisted dynamically in the Asan Bay area around 3,500 B.C. Such a phenomenon resulted primarily from the expansion of the dwelling site due to the introduction of primitive agriculture, as well as environmental (temperature), biological and social changes at those times.

Generation of Daily High-resolution Sea Surface Temperature for the Seas around the Korean Peninsula Using Multi-satellite Data and Artificial Intelligence (다종 위성자료와 인공지능 기법을 이용한 한반도 주변 해역의 고해상도 해수면온도 자료 생산)

  • Jung, Sihun;Choo, Minki;Im, Jungho;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.707-723
    • /
    • 2022
  • Although satellite-based sea surface temperature (SST) is advantageous for monitoring large areas, spatiotemporal data gaps frequently occur due to various environmental or mechanical causes. Thus, it is crucial to fill in the gaps to maximize its usability. In this study, daily SST composite fields with a resolution of 4 km were produced through a two-step machine learning approach using polar-orbiting and geostationary satellite SST data. The first step was SST reconstruction based on Data Interpolate Convolutional AutoEncoder (DINCAE) using multi-satellite-derived SST data. The second step improved the reconstructed SST targeting in situ measurements based on light gradient boosting machine (LGBM) to finally produce daily SST composite fields. The DINCAE model was validated using random masks for 50 days, whereas the LGBM model was evaluated using leave-one-year-out cross-validation (LOYOCV). The SST reconstruction accuracy was high, resulting in R2 of 0.98, and a root-mean-square-error (RMSE) of 0.97℃. The accuracy increase by the second step was also high when compared to in situ measurements, resulting in an RMSE decrease of 0.21-0.29℃ and an MAE decrease of 0.17-0.24℃. The SST composite fields generated using all in situ data in this study were comparable with the existing data assimilated SST composite fields. In addition, the LGBM model in the second step greatly reduced the overfitting, which was reported as a limitation in the previous study that used random forest. The spatial distribution of the corrected SST was similar to those of existing high resolution SST composite fields, revealing that spatial details of oceanic phenomena such as fronts, eddies and SST gradients were well simulated. This research demonstrated the potential to produce high resolution seamless SST composite fields using multi-satellite data and artificial intelligence.