• Title/Summary/Keyword: large integration time-step

Search Result 39, Processing Time 0.028 seconds

Investigation of TaNx diffusion barrier properties using Plasma-Enhanced ALD for copper interconnection

  • Han, Dong-Seok;Mun, Dae-Yong;Gwon, Tae-Seok;Kim, Ung-Seon;Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.178-178
    • /
    • 2010
  • With the scaling down of ULSI(Ultra Large Scale Integration) circuit of CMOS(Complementary Metal Oxide Semiconductor)based electronic devices, the electronic devices become more faster and smaller size that are promising field of semiconductor market. However, very narrow line width has some disadvantages. For example, because of narrow line width, deposition of conformal and thin barrier is difficult. Besides, proportion of barrier width is large, thus resistance is high. Conventional PVD(Physical Vapor Deposition) thin films are not able to gain a good quality and conformal layer. Hence, in order to get over these side effects, deposition of thin layer used of ALD(Atomic Layer Deposition) is important factor. Furthermore, it is essential that copper atomic diffusion into dielectric layer such as silicon oxide and hafnium oxide. If copper line is not surrounded by diffusion barrier, it cause the leakage current and devices degradation. There are some possible methods for improving the these secondary effects. In this study, TaNx, is used of Tertiarybutylimido tris (ethylamethlamino) tantalum (TBITEMAT), was deposited on the 24nm sized trench silicon oxide/silicon bi-layer substrate with good step coverage and high quality film using plasma enhanced atomic layer deposition (PEALD). And then copper was deposited on TaNx barrier using same deposition method. The thickness of TaNx was 4~5 nm. TaNx film was deposited the condition of under $300^{\circ}C$ and copper deposition temperature was under $120^{\circ}C$, and feeding time of TaNx and copper were 5 seconds and 5 seconds, relatively. Purge time of TaNx and copper films were 10 seconds and 6 seconds, relatively. XRD, TEM, AFM, I-V measurement(for testing leakage current and stability) were used to analyze this work. With this work, thin barrier layer(4~5nm) with deposited PEALD has good step coverage and good thermal stability. So the barrier properties of PEALD TaNx film are desirable for copper interconnection.

  • PDF

Three-dimensional Detonation Cell Structures in a Circular Tube

  • Cho, D.R.;Won, S.H.;Shin, Edward J.R.;Choi, J.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.597-601
    • /
    • 2008
  • Three-dimensional structures of detonation wave propagating in circular tube were investigated. Inviscid fluid dynamics equations coupled with a conservation equation of reaction progress variable were analyzed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Variable-$\gamma$ formulation was used to account for the variable properties between unburned and burned states and the chemical reaction was modeled by using a simplified one-step irreversible kinetics model. The computational code was parallelized based on domain decomposition technique using MPI-II message passing library. The computations were carried out using a home made Windows based PC cluster having 160 AMD AthloxXP and Athlon64 processor. The computational domain consisted of through a roundshaped tube with wall conditions. As an initial condition, analytical ZND solution was distributed over the computational domain with disturbances. The disturbances has circumferential large gradient. The unsteady computational results in three-dimension show the detailed mechanisms of multi-cell mode of detonation wave instabilities resulting diamond shape in smoked-foil record.

  • PDF

An Accelerated Iterative Method for the Dynamic Analysis of Multibody Systems (반복 계산법 및 계산 가속기법에 의한 다물체 동역학 해법)

  • 이기수;임철호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.899-909
    • /
    • 1992
  • An iterative solution technique is presented to analyze the dynamic systems of rigid bodies subjected to kinematic constraints. Lagrange multipliers associated with the constraints are iteratively computed by monotonically reducing an appropriately defined constraint error vector, and the resulting equation of motion is solved by a well-established ODE technique. Constraints on the velocity and acceleration as well as the position are made to be satisfied at joints at each time step. Time integration is efficiently performed because decomposition or orthonormalization of the large matrix is not required at all. An acceleration technique is suggested for the faster convergence of the iterative scheme.

Analysis of Flexible Media Using ALE Finite Element Method (ALE 유한요소법을 이용한 유연매체의 거동해석)

  • Jee, Jung-Geun;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.247-250
    • /
    • 2007
  • Flexible media such as the paper, the film, etc. are thin, light and very flexible. They behave in geometrically nonlinear. Any of small force makes large deformation. So we must including aerodynamic effect when its behavior is predicted. Thus, it becomes fully coupled fluid-structure interaction(FSI) problem. In FSI problems, where the fluid mesh near the structure undergoes large deformations and becomes unacceptably distorted, which drive the time step to a very small value for explicit calculations, the arbitrary Lagrangian-Eulerian(ALE) methods or rezoning are used to create a new undistorted mesh for the fluid domain, which allows the calculations to continue. In this paper, FE sheet model considering geometric nonlinearity is formulated to simulate the behavior of the flexible media. Aerodynamic force to the media by surrounding air is calculated by solving the incompressible Navier-Stokes equations. Q2Q1(Taylor-Hood) element which means biquadratic for velocity and bilinear for pressure is used for fluid domain. Q2Q1 element satisfies LBB condition and any stabilization technique is not needed. In this paper, cantilevered sheet in the viscous incompressible Navier-Stokes flow is simulated to check the mesh motion and numerical integration scheme, and then falling paper in the air is simulated and the effects of some representative parameters are investigated.

  • PDF

Prediction Approach with a Stiffness Measure in Nonlinear Dynamic Analysis of Reinforced Concrete Structures (철근 콘크리트 구조물의 비선형 동적 해석을 위한 성치 측정에 의한 예측 접근법)

  • 김교신;전경훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • Current seismic design philosophy for reinforced concrete (RC) structures on energy dissipation through large inelastic defomations. A nonlinear dynamic analysis which is used to represent this behavior is time consuming and expensive, particularly if the computations have to be repeated many times. Therefore, the selection of an efficient yet accurate alogorithm becomes important. The main objective of the present study is to propose a new technique herein called the prediction approach with siffness measure (PASM) method in the convetional direct integration methods, the triangular decomposition of matrix is required for solving equations of motion in every time step or every iteration. The PASM method uses a limited number of predetermined decomposed effective matrices obtained from stiffness states of the structure when it is deformed into the nonlinear range by statically applied cyclic loading. The method to be developed herein will reduce the overall numerical effort when compared to approaches which recompute the stiffness in each time step or iteration.

  • PDF

The Study on Operation Control & Management System of Bimodal Tram (바이모달트램 통합운영관리시스템 구축에 관한 연구)

  • Yoon, Hee-Taek;Park, Young-Kon;Lee, Kang-Won;Hwang, Eui-Kyeong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.181-187
    • /
    • 2011
  • Since 2003, state transportation study core technology development is being promoted as part of the bimodal trams operating in accordance with the development of refractive vehicle as research infrastructure for building high-tech road transport system has been the research and development. Bimodal trams of refraction as the vehicle for him to introduce domestic first ever operation management system also developed in Korea according to case-based technology system, but most of the country, and, in this study, mainly those based on technology integration building management system and the bimodal trams of refraction of a vehicle operated was to highlight the features and benefits. Bimodal tram station itself is the way the exclusive properties and to operate the route with large transport capacity has the characteristics of the railway, but the only routes such as railroad lines is not of closed roads under certain circumstances, the flexibility to use has to be integrated operations management system of bimodal trams characteristics of the railroads and public transportation by combining the characteristics of a flexible, convenient and secure services to users with the aim of providing research and will denote the system developed. In this study, bimodal integration system required for the operation of the tram station around the wired and wireless network management center, applying the organic integration into one system so that you have to be centrally managed. In addition, the existing traffic management system operates as a unidirectional rather than monitoring all system-wide management via the interactive network through real-time requests and responses were configured to allow management and control. These findings of the existing traffic operation management system that you can jump step can be based on future unmanned vehicles and related systems through control of the operation management system will be offered as a basis.

  • PDF

Automatic Photovoltaic Panel Area Extraction from UAV Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.559-568
    • /
    • 2016
  • For the economic management of photovoltaic power plants, it is necessary to regularly monitor the panels within the plants to detect malfunctions. Thermal infrared image cameras are generally used for monitoring, since malfunctioning panels emit higher temperatures compared to those that are functioning. Recently, technologies that observe photovoltaic arrays by mounting thermal infrared cameras on UAVs (Unmanned Aerial Vehicle) are being developed for the efficient monitoring of large-scale photovoltaic power plants. However, the technologies developed until now have had the shortcomings of having to analyze the images manually to detect malfunctioning panels, which is time-consuming. In this paper, we propose an automatic photovoltaic panel area extraction algorithm for thermal infrared images acquired via a UAV. In the thermal infrared images, panel boundaries are presented as obvious linear features, and the panels are regularly arranged. Therefore, we exaggerate the linear features with a vertical and horizontal filtering algorithm, and apply a modified hierarchical histogram clustering method to extract candidates of panel boundaries. Among the candidates, initial panel areas are extracted by exclusion editing with the results of the photovoltaic array area detection. In this step, thresholding and image morphological algorithms are applied. Finally, panel areas are refined with the geometry of the surrounding panels. The accuracy of the results is evaluated quantitatively by manually digitized data, and a mean completeness of 95.0%, a mean correctness of 96.9%, and mean quality of 92.1 percent are obtained with the proposed algorithm.

An Approximation Method in Bayesian Prediction of Nuclear Power Plant Accidents (원자력 발전소 사고의 근사적인 베이지안 예측기법)

  • Yang, Hee-Joong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.16 no.2
    • /
    • pp.135-147
    • /
    • 1990
  • A nuclear power plant can be viewed as a large complex man-machine system where high system reliability is obtained by ensuring that sub-systems are designed to operate at a very high level of performance. The chance of severe accident involving at least partial core-melt is very low but once it happens the consequence is very catastrophic. The prediction of risk in low probability, high-risk incidents must be examined in the contest of general engineering knowledge and operational experience. Engineering knowledge forms part of the prior information that must be quantified and then updated by statistical evidence gathered from operational experience. Recently, Bayesian procedures have been used to estimate rate of accident and to predict future risks. The Bayesian procedure has advantages in that it efficiently incorporates experts opinions and, if properly applied, it adaptively updates the model parameters such as the rate or probability of accidents. But at the same time it has the disadvantages of computational complexity. The predictive distribution for the time to next incident can not always be expected to end up with a nice closed form even with conjugate priors. Thus we often encounter a numerical integration problem with high dimensions to obtain a predictive distribution, which is practically unsolvable for a model that involves many parameters. In order to circumvent this difficulty, we propose a method of approximation that essentially breaks down a problem involving many integrations into several repetitive steps so that each step involves only a small number of integrations.

  • PDF

A study on Digital Agriculture Data Curation Service Plan for Digital Agriculture

  • Lee, Hyunjo;Cho, Han-Jin;Chae, Cheol-Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.171-177
    • /
    • 2022
  • In this paper, we propose a service method that can provide insight into multi-source agricultural data, way to cluster environmental factor which supports data analysis according to time flow, and curate crop environmental factors. The proposed curation service consists of four steps: collection, preprocessing, storage, and analysis. First, in the collection step, the service system collects and organizes multi-source agricultural data by using an OpenAPI-based web crawler. Second, in the preprocessing step, the system performs data smoothing to reduce the data measurement errors. Here, we adopt the smoothing method for each type of facility in consideration of the error rate according to facility characteristics such as greenhouses and open fields. Third, in the storage step, an agricultural data integration schema and Hadoop HDFS-based storage structure are proposed for large-scale agricultural data. Finally, in the analysis step, the service system performs DTW-based time series classification in consideration of the characteristics of agricultural digital data. Through the DTW-based classification, the accuracy of prediction results is improved by reflecting the characteristics of time series data without any loss. As a future work, we plan to implement the proposed service method and apply it to the smart farm greenhouse for testing and verification.

Responses of structure to impulsive loading with application of viscoplasticity (점소성론을 이용한 구조물의 충격응답 해석)

  • 김상환
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.59-66
    • /
    • 1995
  • The dynamic responses of structure under impulsive loading have been investigated according to its duration, based on the theory of viscoplasticity which can appropriately represent the effects of plasticity and rheology simultaneously. The viscoplastic model has been implemented into the two-dimensional finite element system to solve plane stress, plane strain or axi-symmetric problems, and the implicit integration scheme, of which solutions are unconditionally stable for relatively large time step length, has been developed to simulate visoplastic straining with deriving the explicit relationship between stress and strain at a material point level. After simulation, one carefully concludes that the duration as well as magnitude of impulsive loading plays an important role in design of structures.

  • PDF