• Title/Summary/Keyword: large Eddy simulation

Search Result 525, Processing Time 0.036 seconds

Numerical Simulation of the Formation of Linear Dunes

  • ZHANG Ruyan;SATO Yuko;KAN Makiko;KAWAMURA Tetuya
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.211-212
    • /
    • 2003
  • Three dimensional flow above a sand dune has been studied numerically by using Large-Eddy Simulation (LES) method. The movement of the sand which is formed by converging wind directions has been investigated. The numerical method employed in this study can be divided into three parts: (i) calculation of the air flow above the sand dune using MAC method with a generalized coordinate system; (ii) estimation of the sand transfer caused by the flow through the friction; (iii) determination of the shape of the sand surface. Since the computational area has been changed due to step (iii), (i)­(iii) are repeated. The simulated dune, which has initially elliptic cross section, extending at the converging direction which is known as linear dunes.

  • PDF

CFD prediction of vortex induced vibrations and fatigue assessment for deepwater marine risers

  • Kamble, Chetna;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.325-344
    • /
    • 2016
  • Using 3D computational fluid dynamics techniques in recent years have shed significant light on the Vortex Induced Vibrations (VIV) encountered by deep-water marine risers. The fatigue damage accumulated due to these vibrations has posed a great concern to the offshore industry. This paper aims to present an algorithm to predict the crossflow and inline fatigue damage for very long (L/D > $10^3$) marine risers using a Finite-Analytical Navier-Stokes (FANS) technique coupled with a tensioned beam motion solver and rainflow counting fatigue module. Large Eddy Simulation (LES) method has been used to simulate the turbulence in the flow. An overset grid system is employed to mesh the riser geometry and the wake field around the riser. Risers from NDP (2003) and Miami (2006) experiments are used for simulation with uniform, linearly sheared and non-uniform (non-linearly sheared) current profiles. The simulation results including inline and crossflow motion, modal decomposition, spectral densities and fatigue damage rate are compared to the experimental data and useful conclusions are drawn.

Numerical Study of Particle Collection and Entrainment in Electrostatic Precipitator (집진기내 입자 포집과 비산 문제에 대한 수치적 연구)

  • Kim, Ju-Hyeon;Kweon, Soon-Cheol;Kwon, Ki-Hwan;Lee, Sang-Hwan;Lee, Ju-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.27-35
    • /
    • 2012
  • A numerical simulation for particle collection efficiency in a wire-plate electrostatic precipitator (ESP) has been performed. Method of characteristics and finite differencing method (MOC-FDM) were employed to obtain electric field and space charge density, and lattice boltzmann method (LBM) was used to predict the Electrohydrodynamic (EHD) flow according to the ion convection. Large eddy simulation (LES) was considered for turbulent flow and particle simulation was performed by discrete element method (DEM) which considered field charging, electric force, drag force and wall-collision. One way coupling from FDM to LBM was used with small and low density particle assumption. When the charged particle collided with the collecting plate, particle-wall collision was calculated for re-entertainment effect and the effect of gravity force was considered.

A Numerical Study of the Effect off Fire Growth Model on Fire Characteristics in a Carriage (화재 성장 모델이 객차내 화재 특성에 미치는 영향에 관한 수치해석적 연구)

  • 김성찬;유홍선;최영기;김동현
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.180-185
    • /
    • 2004
  • The present study investigates the effect of fire growth model on fire development characteristics in a carriage. The parallel processing version of FDS code is used to simulate the fire driven flow in a carriage and two types of fire growth model which are flame spread model and t$^2$ model are examined for the same geometrical condition. The heat release rates(HRR) of both model are similar each other until 30 s after ignition, but the flame spread model predicts 5 times higher than those of the t$^2$ fire model during the quasi-steady fire period. Maximum heat release rate in the case of flame spread model reaches about to 12 MW at 100 s after fire ignition. Also, various database of fire properties for combustible materials and more elaborate combustion model considering the flame spreading phenomena are required for better predictions of fire development characteristics using numerical simulation.

Large Eddy simulation using P2P1 finite element formulation (P2P1 유한요소를 이용한 LES)

  • Choi, Hyoung-Gwon;Nam, Young-Sok;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.386-391
    • /
    • 2001
  • A finite element code based on P2P1 tetra element has been developed for the large eddy simulation (LES) of turbulent flows around a complex geometry. Fractional 4-step algorithm is employed to obtain time accurate solution since it is less expensive than the integrated formulation, in which the velocity and pressure fields are solved at the same time. Crank-Nicolson method is used for second order temporal discretization and Galerkin method is adopted for spatial discretization. For very high Reynolds number flows, which would require a formidable number of nodes to resolve the flow field, SUPG (Streamline Upwind Petrov-Galerkin) method is applied to the quadratic interpolation function for velocity variables, Noting that the calculation of intrinsic time scale is very complicated when using SUPG for quadratic tetra element of velocity variables, the present study uses a unique intrinsic time scale proposed by Codina et al. since it makes the present three-dimensional unstructured code much simpler in terms of implementing SUPG. In order to see the effect of numerical diffusion caused by using an upwind scheme (SUPG), those obtained from P2P1 Galerkin method and P2P1 Petrov-Galerkin approach are compared for the flow around a sphere at some Reynolds number. Smagorinsky model is adopted as subgrid scale models in the context of P2P1 finite element method. As a benchmark problem for code validation, turbulent flows around a sphere and a MIRA model have been studied at various Reynolds numbers.

  • PDF

The CFD Analysis for the Fatigue Life Evaluation of HRSG Structure (배열회수 보일러 구조물의 피로수명 평가를 위한 유동해석)

  • Kim, Jinbeom;Kim, Chulho
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.7-17
    • /
    • 2020
  • Heat recovery steam generator(HRSG) generate steam using the high-temperature exhaust energy of gas turbines. Structures of HRSG are damaged by flow induced vibration of flue gas in some cases. In order to evaluate fatigue life to predict damage to a structure, a vibration analysis caused from flue gas should be used to derive the Power Spectral Density(PSD). However, it is very difficult to experimentally derive the vibrations generated by the exhaust gas form of gas turbines, which is very fast and complex. It was able to establish a way to identify vibration characteristics depending on the location of the structure by using high computing resources, large eddy simulation (LES). Random vibration analysis through these vibration characteristics(PSD) can evaluate the fatigue life of a structure.

Large Eddy Simulation of the flow around a finite-length square cylinder with free-end slot suction

  • Wang, Hanfeng;Zeng, Lingwei;Alam, Md. Mahbub;Guo, Wei
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.533-546
    • /
    • 2020
  • Large Eddy Simulation (LES) is used to study the effects of steady slot suction on the aerodynamic forces of and flow around a wall-mounted finite-length square cylinder. The aspect ratio H/d of the tested cylinder is 5, where H and d are the cylinder height and width, respectively. The Reynolds number based on free-stream oncoming flow velocity U and d is 2.78×104. The suction slot locates near the leading edge of the free end, with a width of 0.025d and a length of 0.9d. The suction coefficient Q (= Us/U) is varied as Q = 0, 1 and 3, where Us is the velocity at the entrance of the suction slot. It is found that the free-end steady slot suction can effectively suppress the aerodynamic forces of the model. The maximum reduction of aerodynamic forces occurs at Q = 1, with the time-mean drag, fluctuating drag, and fluctuating lift reduced by 3.75%, 19.08%, 40.91%, respectively. For Q = 3, all aerodynamic forces are still smaller than those for Q = 0 (uncontrolled case), but obviously higher than those for Q = 1. The involved control mechanism is successfully revealed, based on the comparison of the flow around cylinder free end and the near wake for the three tested Q values.

Large Eddy Simulation of Flow around a Bluff Body of Vehicle Shape

  • Jang, Dong-Sik;Lee, Yeon-Won;Doh, Deug-Hee;Toshio Kobayashi;Kang, Chang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1835-1844
    • /
    • 2001
  • The turbulent flow with wake, reattachment and recirculation is a very important problem that is related to vehicle dynamics and aerodynamics. The Smagorinsky Model (SM), the Dynamics Subgrid Scale Model (DSM), and the Lagrangian Dynamic Subgrid Scale Model (LDSM) are used to predict the three-dimensional flow field around a bluff body model. The Reynolds number used is 45,000 based on the bulk velocity and the height of the bluff body. The fully developed turbulent flow, which is generated by the driver part, is used for the inlet boundary condition. The Convective boundary condition is imposed on the outlet boundary condition, and the Spalding wall function is used for the wall boundary condition. We compare the results of each model with the results of the PIV measurement. First of all, the LES predicts flow behavior better than the k-$\xi$ turbulence model. When ew compare various LES models, the DSM and the LDSM agree with the PIV experimental data better than the SM in the complex flow, with the separation and the reattachment at the upper front part of th bluff body. But in the rear part of the bluff body, the SM agrees with the PIV experimental results better than them. In this case, the SM predicts overall flow behavior better than the DSM nd the LDSM.

  • PDF

LES on breakup and atomization of a liquid jet into cross turbulent flow in a rectangular duct (사각 덕트내 난류 횡단류 유동장에 분사되는 액체 제트의 분열과 미립화에 관한 LES 해석)

  • Yoo, Young-Lin;Han, Doo-Hee;Sung, Hong-Gye;Jeon, Hyuk-Soo;Park, Chul-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.290-297
    • /
    • 2016
  • A two-phase Large Eddy Simulation(LES) has been conducted to investigate breakup and atomization of a liquid jet in a cross turbulent flow in a rectangular duct. Gas-droplet two-phase flow was solved by a coupled Eulerian-Lagrangian method which tracks every individual particles. Effects of liquid breakup models, sub-grid scale models, and a order of spatial discretization was investigated. The penetration depth in cross flow was comparable with experimental data by varying breakup model and LES scheme. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

LES for Turbulent Duct Flow with Surface Mass Injection (질량분사가 있는 덕트 난류유동의 LES 해석)

  • Kim, Bo-Hoon;Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.232-241
    • /
    • 2011
  • The hybrid rocket shows interesting characteristics of complicated mixing layer developed by the interaction between turbulent oxidizer flow and injected surface mass flow from fuel vaporization. In this study, the compressible LES was conducted to explore the physical phenomena of surface oscillatory flow induced by the flow interferences in a duct domain. From the numerical results, the wall injection generates the stronger streamwise vorticites and the negative components of axial velocity accompanied with the azimuthal vorticity near the surface. And the vortex shedding with a certain time scale was found to be developed by hydrodynamic instability in the mixing layer. The pressure fluctuations in this calculation exhibit a peculiar peak at a specific angular frequency($\omega$=8.8) representing intrinsic oscillation due to the injection.