DOI QR코드

DOI QR Code

LES for Turbulent Duct Flow with Surface Mass Injection

질량분사가 있는 덕트 난류유동의 LES 해석

  • 김보훈 (건국대학교 항공우주공학과 대학원) ;
  • 나양 (건국대학교 기계공학과) ;
  • 이창진 (건국대학교 항공우주공학과)
  • Received : 2010.10.18
  • Accepted : 2011.02.24
  • Published : 2011.03.01

Abstract

The hybrid rocket shows interesting characteristics of complicated mixing layer developed by the interaction between turbulent oxidizer flow and injected surface mass flow from fuel vaporization. In this study, the compressible LES was conducted to explore the physical phenomena of surface oscillatory flow induced by the flow interferences in a duct domain. From the numerical results, the wall injection generates the stronger streamwise vorticites and the negative components of axial velocity accompanied with the azimuthal vorticity near the surface. And the vortex shedding with a certain time scale was found to be developed by hydrodynamic instability in the mixing layer. The pressure fluctuations in this calculation exhibit a peculiar peak at a specific angular frequency($\omega$=8.8) representing intrinsic oscillation due to the injection.

하이브리드 로켓은 난류 산화제 유동과 고체 추진제의 기화로 인한 분사 유동 사이의 상호 작용에 의해 복잡한 형태의 혼합 전단층이 존재한다는 특별한 성질을 가지고 있다. 본 논문에서는 유동 간섭에 의해 표면에서 발생하는 진동 유동의 물리적 특성을 연구하기 위하여 압축성 효과를 고려한 질량분사가 있는 덕트 유동의 LES(Large Eddy Simulation) 해석을 수행하였다. 계산 결과에 따르면, 기화 질량이 분출됨에 따라 주유동방향 와류의 특성이 강해지고 국부적으로 발생하는 역류 현상을 근거로 벽면 근방에서 원주방향 와류가 생성됨을 확인하였다. 그리고 시간 특성을 갖고 나타나는 와류 흘림 현상은 혼합 전단층에 기인한 유동 불안정성에 의해 촉진되었으며, 분출유동에 의해 발달한 고유 진동 유동을 의미하는 압력 섭동의 특정 진동수가 $\omega$=8.8에서 검출됨을 확인하였다.

Keywords

References

  1. Kourta, A., "Acoustic-Mean Flow Interaction and Vortex Shedding in Solid Rocket Motors", International Journal for Numerical Methods in Fluids, Vol. 22, 1996, pp. 449-465. https://doi.org/10.1002/(SICI)1097-0363(19960330)22:6<449::AID-FLD320>3.0.CO;2-W
  2. Apte, S., Yang, V., "A large-eddy simulation study of transition and flow instability in a porous-walled chamber with mass injection", J. Fluid Mech., Vol. 477, 2003, pp. 215-225.
  3. Apte, S., Yang, V., "Unsteady Flow Evolution in Porous Chamber with Surface Mass Injection, Part 1: Free Oscillation", AIAA Journal, Vol. 39, No. 8, 2001, pp. 1577-1586. https://doi.org/10.2514/2.1483
  4. Apte, S., Yang, V., "Unsteady Flow Evolution in Porous Chamber with Surface Mass Injection, Part 2: Acoustic Excitation", AIAA Journal, Vol. 40, No. 2, 2002, pp. 244-253. https://doi.org/10.2514/2.1666
  5. Na, Y., Lee, C. J., "Intrinsic Flow Oscillation in Channel Flow with Wall Blowing", Joint Propulsion Conference & Exhibit, 44th AIAA/ASME/SAE/ASEE, AIAA 2008-5019.
  6. Na, Y., Lee, C. J., "Large Eddy Simulation of Flow Development in Chamber with Surface Mass Injection", Journal of propulsion and power, Vol. 25, No. 1, 2009, pp. 51-59. https://doi.org/10.2514/1.34980
  7. 구원모, 이창진, "산화제 난류 유동 변화에 대한 하이브리드 로켓 연소 특성", 한국추진공학회 춘계학술대회, 2007, pp. 103-115.
  8. Weiss, J. M., Smith, W. A., "Preconditioning Applied to Variable and Constant Density Flows", AIAA Journal, Vol. 33, No. 11, 1995, pp. 2050-2057. https://doi.org/10.2514/3.12946
  9. Park, S. H., Lee, J. E., and Kwon, J. H., "Preconditioned HLLE Method for Flows at All Mach Numbers", AIAA Journal, Vol. 44, No. 11, 2006, pp. 2645-2653. https://doi.org/10.2514/1.12176
  10. Germano, M., Piomelli, U., Moin, P., and Cabot, W. H., "A Dynamic Subgrid-Scale Eddy Viscosity Model", Phys. Fluids A, Vol. 3, 1991, pp. 1760-1765. https://doi.org/10.1063/1.857955
  11. Na, Y., "Direct Numerical Simulation of Channel Flow with Wall Injection", KSME International Journal, Vol. 17, No. 10, 2003, pp. 1543-1551.
  12. Wu, X., Moin, P., "A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow", J. Fluid Mech., Vol. 608, 2008, pp. 81-112.
  13. Eggels, J. G. M., Unger, F., Weiss, M. H., Westerweel, J., Adrian, R. J., Fredrich, R., and Nieuwstadt, F. T. M., "Fully developed turbulent pipe flow : a comparison between direct numerical simulation and experiment", J. Fluid Mech., Vol. 268, 1994, pp. 175-209. https://doi.org/10.1017/S002211209400131X
  14. Rudman, M., Blackburn, H. M., "Large Eddy Simulation of Turbulent Pipe Flow", 2nd International Conference on CFD in the Minerals and Process Industries, 1999, pp. 503-508.
  15. Ghosh, S., Sesterhenn, J., Friedrich, R., "DNS and LES of compressible turbulent pipe flow with isothermal wall", Direct and Large-Eddy Simulation VI, Part XVI, 2006, pp. 721-728.
  16. Xu, X., Lee, J. S., and Pletcher, R. H., "A compressible finite volume formulation for large eddy simulation of turbulent pipe flows at low Mach number in Cartesian coordinates", Journal of Computational Physics, Vol. 203, 2005, pp. 22-48. https://doi.org/10.1016/j.jcp.2004.08.005
  17. Masugi, M., Ide, T., Yuasa, S., Sakurai, T., Shiraishi, N., Shimada, T., "Visualization of Flames in Combustion Chamber of Swirling-Oxidizer-Flow-Type Hybrid Rocket Engines", Joint Propulsion Conference & Exhibit, 46th AIAA/ASME/SAE/ASEE, AIAA 2010-6546.
  18. 나양, 이창진, "채널유동에서 질량분사에 의한 표면유동의 진동 특성," 한국항공우주학회지, 제37권 제1호, 2009, pp.62-68. https://doi.org/10.5139/JKSAS.2009.37.1.062
  19. 나양, 이창진, "분출유동이 있는 채널 난류 유동의 LES 해석", 한국항공우주학회지, 제35권 제8호, 2007, pp. 699-705.

Cited by

  1. LES for Turbulent Duct Flow with Surface Mass Injection and Vortex Shedding vol.40, pp.9, 2012, https://doi.org/10.5139/JKSAS.2012.40.9.745
  2. Vortex sheddings and Pressure Oscillations in Hybrid Rocket Combustion vol.41, pp.1, 2013, https://doi.org/10.5139/JKSAS.2013.41.1.40