• Title/Summary/Keyword: language model adaptation

Search Result 42, Processing Time 0.019 seconds

N- gram Adaptation Using Information Retrieval and Dynamic Interpolation Coefficient (정보검색 기법과 동적 보간 계수를 이용한 N-gram 언어모델의 적응)

  • Choi Joon Ki;Oh Yung-Hwan
    • MALSORI
    • /
    • no.56
    • /
    • pp.207-223
    • /
    • 2005
  • The goal of language model adaptation is to improve the background language model with a relatively small adaptation corpus. This study presents a language model adaptation technique where additional text data for the adaptation do not exist. We propose the information retrieval (IR) technique with N-gram language modeling to collect the adaptation corpus from baseline text data. We also propose to use a dynamic language model interpolation coefficient to combine the background language model and the adapted language model. The interpolation coefficient is estimated from the word hypotheses obtained by segmenting the input speech data reserved for held-out validation data. This allows the final adapted model to improve the performance of the background model consistently The proposed approach reduces the word error rate by $13.6\%$ relative to baseline 4-gram for two-hour broadcast news speech recognition.

  • PDF

Language Model Adaptation Based on Topic Probability of Latent Dirichlet Allocation

  • Jeon, Hyung-Bae;Lee, Soo-Young
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.487-493
    • /
    • 2016
  • Two new methods are proposed for an unsupervised adaptation of a language model (LM) with a single sentence for automatic transcription tasks. At the training phase, training documents are clustered by a method known as Latent Dirichlet allocation (LDA), and then a domain-specific LM is trained for each cluster. At the test phase, an adapted LM is presented as a linear mixture of the now trained domain-specific LMs. Unlike previous adaptation methods, the proposed methods fully utilize a trained LDA model for the estimation of weight values, which are then to be assigned to the now trained domain-specific LMs; therefore, the clustering and weight-estimation algorithms of the trained LDA model are reliable. For the continuous speech recognition benchmark tests, the proposed methods outperform other unsupervised LM adaptation methods based on latent semantic analysis, non-negative matrix factorization, and LDA with n-gram counting.

Style-Specific Language Model Adaptation using TF*IDF Similarity for Korean Conversational Speech Recognition

  • Park, Young-Hee;Chung, Min-Hwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2E
    • /
    • pp.51-55
    • /
    • 2004
  • In this paper, we propose a style-specific language model adaptation scheme using n-gram based tf*idf similarity for Korean spontaneous speech recognition. Korean spontaneous speech shows especially different style-specific characteristics such as filled pauses, word omission, and contraction, which are related to function words and depend on preceding or following words. To reflect these style-specific characteristics and overcome insufficient data for training language model, we estimate in-domain dependent n-gram model by relevance weighting of out-of-domain text data according to their n-. gram based tf*idf similarity, in which in-domain language model include disfluency model. Recognition results show that n-gram based tf*idf similarity weighting effectively reflects style difference.

Improvement of Korean Sign Language Recognition System by User Adaptation (사용자 적응을 통한 한국 수화 인식 시스템의 개선)

  • Jung, Seong-Hoon;Park, Kwang-Hyun;Bien, Zeung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.301-303
    • /
    • 2007
  • This paper presents user adaptation methods to overcome limitations of a user-independent model and a user-dependent model in a Korean sign language recognition system. To adapt model parameters for unobserved states in hidden Markov models, we introduce new methods based on motion similarity and prediction from adaptation history so that we can achieve faster adaption and higher recognition rates comparing with previous methods.

  • PDF

A Prediction Model on Adaptation to University Life among Chinese International Students in Korea (중국 유학생의 한국 대학생활 적응 예측모형)

  • Lin, Qin Lan;Kim, Hee-Kyung
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.17 no.3
    • /
    • pp.501-513
    • /
    • 2011
  • Purpose: On the basis of the theoretical framework of a combination of Roy's adaptation theory and Lazarus & Folkman's theory of stress - appraise coping, the purpose of this study was to predict effect factors of adaptation to university life of Chinese international students in Korea. After this, a model of adaptation to university life of Chinese international students in Korea was constructed. Methods: A questionnaire was used to survey 369 Chinese international students from one university in Korea, which was analyzed by using PASW Statistics 18.0 and LISREL 8.7. Results: This theoretical model explained adaptation to university life of Chinese international students at 75.0% in Korea. Physical symptoms, loneliness, acculturation stress and self-efficacy directly affected the adaptation to university life. Korean language proficiency indirectly affected adaptation to university life through self-efficacy. Conclusion: Results of this study provided theoretical basis for the future health care of university- centered health centers. For improving adaptation to university life of Chinese international students in Korea, education and nursing measures for reducing physical symptoms, loneliness and acculturation stress, and improving Korean language proficiency and self-efficacy are proposed for further research and development.

Language Model Adaptation for Conversational Speech Recognition (대화체 연속음성 인식을 위한 언어모델 적응)

  • Park Young-Hee;Chung Minhwa
    • Proceedings of the KSPS conference
    • /
    • 2003.05a
    • /
    • pp.83-86
    • /
    • 2003
  • This paper presents our style-based language model adaptation for Korean conversational speech recognition. Korean conversational speech is observed various characteristics of content and style such as filled pauses, word omission, and contraction as compared with the written text corpora. For style-based language model adaptation, we report two approaches. Our approaches focus on improving the estimation of domain-dependent n-gram models by relevance weighting out-of-domain text data, where style is represented by n-gram based tf*idf similarity. In addition to relevance weighting, we use disfluencies as predictor to the neighboring words. The best result reduces 6.5% word error rate absolutely and shows that n-gram based relevance weighting reflects style difference greatly and disfluencies are good predictor.

  • PDF

Probing Sentence Embeddings in L2 Learners' LSTM Neural Language Models Using Adaptation Learning

  • Kim, Euhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.13-23
    • /
    • 2022
  • In this study we leveraged a probing method to evaluate how a pre-trained L2 LSTM language model represents sentences with relative and coordinate clauses. The probing experiment employed adapted models based on the pre-trained L2 language models to trace the syntactic properties of sentence embedding vector representations. The dataset for probing was automatically generated using several templates related to different sentence structures. To classify the syntactic properties of sentences for each probing task, we measured the adaptation effects of the language models using syntactic priming. We performed linear mixed-effects model analyses to analyze the relation between adaptation effects in a complex statistical manner and reveal how the L2 language models represent syntactic features for English sentences. When the L2 language models were compared with the baseline L1 Gulordava language models, the analogous results were found for each probing task. In addition, it was confirmed that the L2 language models contain syntactic features of relative and coordinate clauses hierarchically in the sentence embedding representations.

An Enhancement of Japanese Acoustic Model using Korean Speech Database (한국어 음성데이터를 이용한 일본어 음향모델 성능 개선)

  • Lee, Minkyu;Kim, Sanghun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.438-445
    • /
    • 2013
  • In this paper, we propose an enhancement of Japanese acoustic model which is trained with Korean speech database by using several combination strategies. We describe the strategies for training more than two language combination, which are Cross-Language Transfer, Cross-Language Adaptation, and Data Pooling Approach. We simulated those strategies and found a proper method for our current Japanese database. Existing combination strategies are generally verified for under-resourced Language environments, but when the speech database is not fully under-resourced, those strategies have been confirmed inappropriate. We made tyied-list with only object-language on Data Pooling Approach training process. As the result, we found the ERR of the acoustic model to be 12.8 %.

Domain Adaptive Fruit Detection Method based on a Vision-Language Model for Harvest Automation (작물 수확 자동화를 위한 시각 언어 모델 기반의 환경적응형 과수 검출 기술)

  • Changwoo Nam;Jimin Song;Yongsik Jin;Sang Jun Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.2
    • /
    • pp.73-81
    • /
    • 2024
  • Recently, mobile manipulators have been utilized in agriculture industry for weed removal and harvest automation. This paper proposes a domain adaptive fruit detection method for harvest automation, by utilizing OWL-ViT model which is an open-vocabulary object detection model. The vision-language model can detect objects based on text prompt, and therefore, it can be extended to detect objects of undefined categories. In the development of deep learning models for real-world problems, constructing a large-scale labeled dataset is a time-consuming task and heavily relies on human effort. To reduce the labor-intensive workload, we utilized a large-scale public dataset as a source domain data and employed a domain adaptation method. Adversarial learning was conducted between a domain discriminator and feature extractor to reduce the gap between the distribution of feature vectors from the source domain and our target domain data. We collected a target domain dataset in a real-like environment and conducted experiments to demonstrate the effectiveness of the proposed method. In experiments, the domain adaptation method improved the AP50 metric from 38.88% to 78.59% for detecting objects within the range of 2m, and we achieved 81.7% of manipulation success rate.

Integration of WFST Language Model in Pre-trained Korean E2E ASR Model

  • Junseok Oh;Eunsoo Cho;Ji-Hwan Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1692-1705
    • /
    • 2024
  • In this paper, we present a method that integrates a Grammar Transducer as an external language model to enhance the accuracy of the pre-trained Korean End-to-end (E2E) Automatic Speech Recognition (ASR) model. The E2E ASR model utilizes the Connectionist Temporal Classification (CTC) loss function to derive hypothesis sentences from input audio. However, this method reveals a limitation inherent in the CTC approach, as it fails to capture language information from transcript data directly. To overcome this limitation, we propose a fusion approach that combines a clause-level n-gram language model, transformed into a Weighted Finite-State Transducer (WFST), with the E2E ASR model. This approach enhances the model's accuracy and allows for domain adaptation using just additional text data, avoiding the need for further intensive training of the extensive pre-trained ASR model. This is particularly advantageous for Korean, characterized as a low-resource language, which confronts a significant challenge due to limited resources of speech data and available ASR models. Initially, we validate the efficacy of training the n-gram model at the clause-level by contrasting its inference accuracy with that of the E2E ASR model when merged with language models trained on smaller lexical units. We then demonstrate that our approach achieves enhanced domain adaptation accuracy compared to Shallow Fusion, a previously devised method for merging an external language model with an E2E ASR model without necessitating additional training.