• Title/Summary/Keyword: landslide hazard area

Search Result 96, Processing Time 0.017 seconds

GIS Technology for Environmental Gelolgic Mapping (환경 지질도 작성을 위한 GIS 응용연구)

  • 김윤종;유일현;김원영;신은선
    • The Journal of Engineering Geology
    • /
    • v.4 no.3
    • /
    • pp.321-331
    • /
    • 1994
  • Environmental geologic maps were produced on the cheong-Ju area using GIS technique. They are GIS maps on land management and regional land use planning. In the last year, the model of environmental geologic map was established, and the digital database was constructed by environmental and geotechnical data collected form various sources. The special maps for environmental geologic study were also pnoduced ; landslide hazard and risk map, cut & fill map, actual run-off map and engineering geological map. The maps are secondary models (sub-model) in order to create final environmental geologic map. Finally, Environmental Geologic Unit(EGU) was evaluated for regional land use planning and land management by EGIS(Environmental Geologic Inforafion System). This unit is very important in order to assess environmental geologic impact on large construction works and detailed road design etc.

  • PDF

Development of Spatial Information System for Regional Ground Stability Assessment near Dam area (댐 주변지역 광역적 지반 안정성 평가를 위한 공간 정보시스템 개발)

  • 장범수;이사호;최위찬;최재원;오영철
    • Spatial Information Research
    • /
    • v.9 no.1
    • /
    • pp.125-135
    • /
    • 2001
  • Ground failure such as landslide, rock fall land subsidence by heavy rainfall have damaged to people and property. Especially, the damage to important facility such as dam, bridge, tunnel and industrial complex may be possible. Therefore the ground failure must be assessed and counter plan must be prepared. So, the object of this study is to develop the spatial information system for regional ground stability assessment. For this, the topographic, geologic, soil, forest, land use, rainfall frequency map, and satellite image near 40 dams were collected and constructed to the spatial information system. The spatial information system was developed using Avenue in ArcView 3.2 environment and consists of pull down menus and icons. For application of the spatial information system, regional ground stability was assessed in Andong dam. The assessment was ground failure susceptibility and possibility. The spatial information can be used for regional ground stability assessment, prevention and mitigation of hazard, and management of ground as basic data.

  • PDF

Characteristic Analysis and Prediction of Debris Flow-Prone Area at Daeryongsan (대룡산 토석류 특성 분석 및 위험지역 예측에 관한 연구)

  • CHOI, Young-Nam;LEE, Hyung-Ho;YOO, Nam-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.48-62
    • /
    • 2018
  • In this study, landslide of debris flow occurred at 51 sites around Daeryounsan located in between Chuncheon-si and Hongcheon-gun during July in 2013 were investigated in field and behavior characteristics of debris flow were analyzed on the basis of records of rainfall and site investigation. According to debris flow types of channelized and hill slope, location and slope angle of initiation and deposit zone, and width and depth of erosion were investigated along entire runout of debris flow. DEM(Digital Elevation Model) of Daeryounsan was constructed with digital map of 1:5,000 scale. Land slide hazard was estimated using SINMAP(Stability INdex MAPping) and the predicted results were compared with field sites where debris flow occurred. As analyzed results, for hill slope type of debris flow, predicted sites were quite comparable to actual sites. On the other hand, for channelized type of debris flow, debris flow occurrence sites were predicted by using stability index associated with topographic wetness index. As analyzed results of 4 different conditions with the parameter T/R, Hydraulic transmissivity/Effective recharge rate, proposed by NRCS (Natual Resources Conservation Service), predicted results showed more or less different actual sites and the degree of hazard tended to increase with decrease of T/R value.

Suggestion on the Dredging Time of Sediments Behind Debris Barrier Using Rainfall Data (강우자료를 이용한 사방댐 배면 퇴적물의 준설시기 선정)

  • Song, Young-Suk;Kim, Minseok;Jung, In-Keun
    • The Journal of Engineering Geology
    • /
    • v.29 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • The rainfall intensity-duration curve (I-D curve) was used for selecting the dredging time of sediments behind a debris barrier which is located at the study area in Inje-gun, Kangwon Province. The I-D curve was newly suggested by using the data of rainfall-induced landslides for about 30 years from June to September in Kangwon Province. According to the monitoring results, the landslides have been not occurred during the monitoring period of the dredged sediments management system at the study area, and also all of the rainfall events were located below the I-D curve. The weight of the dredged sediments measured at the management system in the field was increased but the weight increment was small. It means that the increase of the dredged sediments was not the effect of landslide but the effect of soil erosion at the ground surface due to heavy rainfall. The weight of the dredged sediments behind a debris barrier could be known in real time using the rainfall data measured at the management system. Also, when the I-D curve is used with the management system, it is possible to select the optimum dredging time for sediments behind debris barrier.

Comparison of Sediment Disaster Risk Depending on Bedrock using LSMAP (LSMAP을 활용한 기반암별 토사재해 위험도 비교)

  • Choi, Won-il;Choi, Eun-hwa;Jeon, Seong-kon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.51-62
    • /
    • 2017
  • For the purpose of the study, of the 76 areas subject to preliminary concentrated management on sediment disaster in the downtown area, 9 areas were selected as research areas. They were classified into three stratified rock areas (Gyeongsan City, Goheung-gun and Daegu Metropolitan City), three igneous rock areas (Daejeon City, Sejong Special Self-Governing City and Wonju City) and three metamorphic rock areas (Namyangju City, Uiwang City and Inje District) according to the characteristics of the bedrock in the research areas. As for the 9 areas, analyses were conducted based on tests required to calculate soil characteristics, a predictive model for root adhesive power, loading of trees and on-the-spot research. As for a rainfall scenario (rainfall intensity), the probability of rainfall was applied as offered by APEC Climate Center (APCC) in Busan. As for the prediction of landslide risks in the 9 areas, TRIGRS and LSMAP were applied. As a result of TRIGRIS prediction, the risk rate was recorded 30.45% in stratified rock areas, 41.03% in igneous rock areas and 45.04% in metamorphic rock areas on average. As a result of LSMAP prediction based on root cohesion and the weight of trees according to crown density, it turned out to a 1.34% risk rate in the stratified rock areas, 2.76% in the igneous rock areas and 1.64% in the metamorphic rock areas. Analysis through LSMAP was considered to be relatively local predictive rather than analysis using TRIGRS.

Assessment and Damage Reduction Strategy of Acid Rock Drainage in Highway Construction Site: ○○ Highway Construction Site (고속도로 건설현장의 산성배수 발생개연성평가 및 피해저감대책: ○○고속도로건설현장)

  • Lee, Jin-Soo;Kim, Jae Gon;Park, Jeong-Sik;Chon, Chul-Min;Nam, In-Hyun
    • Economic and Environmental Geology
    • /
    • v.46 no.5
    • /
    • pp.411-424
    • /
    • 2013
  • Assessment and damage reduction strategy of acidic rock drainage were conducted in a section of ${\bigcirc}{\bigcirc}$ highway construction site. The geology of the studied section consists of Icheonri sandstone and intermediate to acidic volcanic rocks. Sulfides occur as a disseminated type in sandstone and volcanics which were altered by the hydrothermal solution of granite intrusion. Volcanics and sandstone with a high content of sulfide were classified as a potentially acid rock drainage(ARD) forming rock. The drainage originated from those rocks may acidify and contaminate the surrounding area during the highway construction. Therefore, the drainage should be treated before it is discharged. A slope landslide hazard due to the ARD was also expected and the coating technology was recommended for the reduction of ARD generation as a preemptive measure before reinforcement work for enhancing slope stability such as shotcrete and anchor. According to the ARD risk analysis, those rocks should not be used as cement aggregate, but only to be used as a bank fill material of a filling-up system that allows minimal contact with rainfall and groundwater.