• Title/Summary/Keyword: landing gear

Search Result 128, Processing Time 0.033 seconds

The Analysis and the Qualification Test Procedures for Oleo-pneumatic Landing Gear (유공압 착륙장치 해석 및 시험평가)

  • Kim, Tae-Uk;Lee, Sang-Wook;Kim, Sung-Chan
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.2
    • /
    • pp.7-12
    • /
    • 2012
  • A landing gear absorbs the impact energy during the touchdown and it generally consists of an oleo-pneumatic shock absorber and structural components. It should be designed not only to satisfy the static and fatigue strength requirements but to have the sufficient shock absorbing efficiency. The design loads and shock absorbing performance are to be validated by tests, which is required by MIL Spec and FAR, etc. This paper presents the development procedures from the design requirements to the qualification tests and technical points to be considered, with examples of the helicopter landing gear development.

Design Development Test of Crashworthiness Device for Landing Gear (착륙장치 내추락 장치 설계개발시험)

  • Shin, Jeong-Woo;Kim, Tae-Uk;Hwang, In-Hee;Jo, Jeong-Jun;Lee, Jeong-Sun;Park, Chong-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.111-116
    • /
    • 2010
  • To improve occupants' safety in an emergency, crashworthy design is necessary to rotorcraft design and development. Especially, landing gear has the important role for crashworthy design because landing gear absorbs relatively large energy for the crash landing. In addition, military specifications require failure of landing gear shall not increase danger to any occupants by penetration of the airframe. To meet the specification requirements, crashworthiness device like failure mechanism should be prepared so that landing gear is collapsed safely and doesn't penetrate the airframe. In this study, design and design development test of the failure mechanism which is necessary for the rotorcraft landing gear was performed. First, collapse scenario was determined for the landing gear not to penetrate the airframe. Then, the failure pin which is the most important part of the failure mechanism was designed with 2 strength range in order to meet design criteria. Finally, design of the failure mechanism was verified successfully by design development test.

System for Leveling Landing Surface in Response to Changes in Quadcopter Posture (쿼드콥터 자세 변화에 대응한 착륙 접지면 수평 유지 시스템)

  • Kwon, Yeongkeun;Cheon, Donghun;Hwang, Seonghyeon;Choi, Jiwook;Kang, Hosun;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.155-163
    • /
    • 2021
  • In this paper, we propose a four 2-link robotic leg landing system that is used for leveling the bottom of the landing system, even when the quadcopter posture is changed. The case of conventional skid type landing gear has a risk when the quadcopter lands on a moving vehicle because the skid type landing gear is tilted to the landing site at this situation. To solve this problem, it is necessary to level the bottom of the landing system when the quadcopter posture is changed in the flight. Therefore, the proposed landing system used a four 2-link robotic leg with leveling method. The leveling method was derived from the method of determining a plane. The superiority of the proposed system was verified with 6-axis stewart platform and real flight experiment, and it shows feasibility of leveling method and proposed landing system.

Response analysis of 6DOF fuselage model during taxiing for comparison of characteristics of single/double stage oleo-pneumatic shock absorber at nose (단-복동형 유.공압 완충장치의 전방장착특성 비교를 위한 6자유도 기체 모형의 지상 이동 응답해석)

  • Lee, Kook-Hee;Lee, Yoon-Kyu;Kim, Kwang-Joon;Lee, Sang-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.734-735
    • /
    • 2008
  • Shock absorber for rotorcraft landing gear should absorb landing impact during landing and isolate vibration to fuselage during taxiing. Double stage oleo-pneumatic shock absorber is known to have better performances than single stage oleo-pneumatic shock absorber. This paper deals with the z-direction translational acceleration at mass center, roil and pitch angular acceleration of fuselage for single and double stage oleo-pneumatic shock absorber at nose landing gear when a 6DOF rigid model is taxiing on the pound.

  • PDF

An Improvement Study on Stick-Slip Behavior of Nose Landing Gear for Rotary Wing Aircraft (회전익 항공기 전륜착륙장치 단속거동 현상 개선연구)

  • Choi, Jae Hyung;Chang, Min Wook;Lee, Yoon-Woo;Yoon, Jong Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.61-67
    • /
    • 2017
  • The Nose Landing Gear(NLG) of Rotary Wing Aircraft is an essential equipment in Landing System for pilot to perform a flight mission. It supports the fuselage at ground and absorbs the impact from the ground when landing, thereby, these functions sustain operational capability for pilot and crew. However, the A aircraft caused stick-slip behavior when it was stationed on the ground. Therefore, this paper summarizes pilot comment in operation which are classified by cause of occurrence and the troubleshooting process about each comment. It also describes design improvements which was derived from troubleshooting and suggests verification results of flight test.

Design of Landing Gear Shock Absorber Using Pressure-relief Valve (Pressure-relief valve 를 적용한 착륙장치 완충장치 설계)

  • Kim, Tae-Uk;Shin, Jeong-Woo;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.508-511
    • /
    • 2008
  • The most landing gear use oleo-pneumatic shock strut to absorb the impact energy during touchdown. The shock strut is composed of the oil damper and the gas spring, especially the oil damper provides resistance force which is proportional to the square of landing speed. In case of high landing speed, the abnormal peak load can be occurred and transferred to the airframe structure. To prevent this, the pressure-relief valve is used to limit the damping force under the specific level. In this paper, it is presented the design process to find optimal damping and analysis results using pressure-relief valve.

  • PDF

Non-linear Shimmy Analysis of a Nose Landing Gear with Free-play (유격을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Hwang, Jae-Up;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.973-978
    • /
    • 2010
  • In this paper, we studied the shimmy phenomena of an aircraft nose landing gear considering free-play. Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. This phenomena is caused by a couple of conditions such as low torsional stiffness of the strut, friction and free-play in the gear, wheel imbalance, or worn parts, and it may make an aircraft unstable. Free-play non-linearity is linearized by the described function for a stability analysis in a frequency domain, and time marching is performed using the fourth-order Runge-Kutta method. We performed the numerical simulation of the nose landing gear shimmy and investigated its linear and nonlinear characteristics. From the numerical results, we found limit-cycle-oscillations at the speed under linear shimmy speed for the case considering free-play and it can be concluded that the shimmy stability can be decreased by free-play.

Modeling of MR Damper Landing Gear Considering Incompletely Developed Fluid Flow (불완전 발달 유체 유동을 고려한 MR댐퍼 착륙장치 모델링)

  • Lee, Hyo-Sang;Jang, Dae-Sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.7-18
    • /
    • 2021
  • A semi-active MR damper landing gear is a damper that generates a fluid damping force and a magnetic field control damping force when the MR fluid passes through annular flow paths. In the case of MR fluid passing through annular flow paths, an incompletely developed flow inevitably occurs, causing an error in calculating damper inner forces including the fluid damping force. This error results in an inaccurate design of damper structural parameters and control gain selection, resulting in deterioration of dynamic characteristics and shock absorption performance of the landing gear. In this paper, we derived a mathematical model of an MR damper landing gear considering additional damping force generated in the entrance region of annular flow paths of the MR damper. If the mathematical modeling derived from this paper is applied to the design and optimization process of an MR damper landing gear, excellent performance of the MR damper landing gear is expected.

Force Control of Main Landing Gear using Hybrid Magneto-Rheological Damper (하이브리드 MR댐퍼를 이용한 주륜 착륙장치 하중제어기법 연구)

  • Hyun, Young-O;Hwang, Jae-Up;Hwang, Jae-Hyuk;Bae, Jae-Sung;Lim, Kyoung-Ho;Kim, Doo-Man;Kim, Tae-Wook;Park, Myung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.315-320
    • /
    • 2010
  • To improve not only the basic performance but also the fail-safe performance, power consumption of the main landing gear for helicopters, a semi-active control landing gear using hybrid MR damper, was introduced in this paper. This damper of the configuration to install a permanent magnet in a electromagnet MR damper, was designed by the trade-off study on permanent magnet location and a magnet field analysis. Force control algorithm which keep the sum of air spring force and damping force at a specified value during landing, was used for the controller. The drop simulations using ADAMS Model for this semi-active control landing gear, were done. The improvement of the preceding performances as the result to evaluate the landing performance by the simulations, has been confirmed.

Helicopter Landing Gear Ground Reaction Simulation (헬리콥터 강착장치 시뮬레이션)

  • 최형식;전향식;오경륜;배중원;남기욱
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2004.05a
    • /
    • pp.131-135
    • /
    • 2004
  • Landing gear force reaction module is important for aircraft take off and landing simulation. But usually this modulo is not accounted for control law design simulation. because it does not affect the flying quality of aircraft. Now a days, this module is getting more important according to the increase of needs for training purpose simulation and specific control law design such as unmaned aircraft landing on the moving platform. In this paper 1DOF mass spring simple force system per gear was accepted.

  • PDF