• 제목/요약/키워드: landing dynamic

Search Result 121, Processing Time 0.028 seconds

Landing with Visual Control Reveals Limb Control for Intrinsic Stability

  • Lee, Aeri;Hyun, Seunghyun;Ryew, Checheong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.226-232
    • /
    • 2020
  • Repetition of landing with visual control in sports and training is common, yet it remains unknown how landing with visual control affects postural stability and lower limb kinetics. The purpose of this study was to test the hypothesis that landing with visual control will influence on lower limb control for intrinsic dynamic postural stability. Kinematics and kinetics variables were recorded automatically when all participants (n=10, mean age: 22.00±1.63 years, mean heights: 177.27±5.45 cm, mean mass: 73.36±2.80 kg) performed drop landings from 30 cm platform. Visual control showed higher medial-lateral force, peak vertical force, loading rate than visual information condition. This was resulted from more stiff leg and less time to peak vertical force in visual control condition. Leg stiffness may decrease due to increase of perturbation of vertical center of gravity, but landing strategy that decreases impulse force was shifted in visual control condition during drop landing. These mechanism explains why rate of injury increase.

Review of Crash Landing Load Factor (추락착륙 하중배수에 대한 고찰)

  • Bae, Hyo-gil;Kim, Do-Hyung;Park, Jea Sung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.47-55
    • /
    • 2021
  • When an abnormal landing occurs, aircraft structures should be designed to guarantee occupants survivability without preventing egress. To find out fire root causes at crash, lots of fixed aircraft crash tests were conducted. Appropriate crash load factors were established with the comprehension of structural behavior based on dynamic analysis and investigation of human tolerance. Cargo restraint criteria were set up considering passengers safety and operational cost while analyzing past cargo aircraft accident data using a probabilistic approach. Reviewing results of past crash tests, current crash landing load factor was appreciated physically, medically, and economically.

Gender Differences of Knee Valgus Angle during Vertical Drop Landing in College Students (남녀 대학생들의 수직착지 시 성에 따른 무릎 외반각도의 차이)

  • Yi, Chung-Hwi;Park, So-Yeon;Yoo, Won-Gyu
    • Physical Therapy Korea
    • /
    • v.12 no.1
    • /
    • pp.28-35
    • /
    • 2005
  • The purpose of this study was to determine whether gender differences existed in knee valgus kinematics in college students when performing a vertical drop landing. The hypothesis of this study was that females would demonstrate greater knee valgus motion. These differences in knee valgus motion may be indicative of decreased dynamic knee joint control in females. This study compared the initial knee valgus angle and maximum knee valgus angle at the instant of impact on vertical drop landings between healthy men and women. In this study, 60 participants (30 males, 30 females) dropped from a height of 43 cm. A digital camera and two-dimensional video motion analysis software were used to analyze the kinematic data. There was significant difference in the mean knee valgus angle at initial contact landing between the two groups (Mean=$7.88^{\circ}$, SD=$4.24^{\circ}$ in males, Mean=$12.93^{\circ}$, SD=$2.89^{\circ}$ in females). The range of knee valgus angle on landing (Mean=$3.25^{\circ}$, SD=$5.72^{\circ}$ in males, Mean=$11.44^{\circ}$, SD=$6.39^{\circ}$ in females) was differed significantly (p<.05). The maximal angle of knee valgus on landing (Mean=$10.91^{\circ}$, SD=$6.89^{\circ}$ in males, Mean=$24.25^{\circ}$, SD=$6.38^{\circ}$ in females) was also differed significantly (p<.05). The females landed with a larger range of knee valgus motion than the males and this might have increased the likelihood of a knee injury. The absence of dynamic knee joint stability may be responsible for increased rates of knee injury in females. No method for accurate and practical screening and identification of athletes at increased risk of ACL injury is currently available to target those individuals that would benefit from neuromuscular training before sports participation.

  • PDF

Vision-based Autonomous Landing System of an Unmanned Aerial Vehicle on a Moving Vehicle (무인 항공기의 이동체 상부로의 영상 기반 자동 착륙 시스템)

  • Jung, Sungwook;Koo, Jungmo;Jung, Kwangyik;Kim, Hyungjin;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.262-269
    • /
    • 2016
  • Flight of an autonomous unmanned aerial vehicle (UAV) generally consists of four steps; take-off, ascent, descent, and finally landing. Among them, autonomous landing is a challenging task due to high risks and reliability problem. In case the landing site where the UAV is supposed to land is moving or oscillating, the situation becomes more unpredictable and it is far more difficult than landing on a stationary site. For these reasons, the accurate and precise control is required for an autonomous landing system of a UAV on top of a moving vehicle which is rolling or oscillating while moving. In this paper, a vision-only based landing algorithm using dynamic gimbal control is proposed. The conventional camera systems which are applied to the previous studies are fixed as downward facing or forward facing. The main disadvantage of these system is a narrow field of view (FOV). By controlling the gimbal to track the target dynamically, this problem can be ameliorated. Furthermore, the system helps the UAV follow the target faster than using only a fixed camera. With the artificial tag on a landing pad, the relative position and orientation of the UAV are acquired, and those estimated poses are used for gimbal control and UAV control for safe and stable landing on a moving vehicle. The outdoor experimental results show that this vision-based algorithm performs fairly well and can be applied to real situations.

Closed-loop active vibration control of a typical nose landing gear with torsional MR fluid based damper

  • Sateesh, B.;Maiti, Dipak K.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.39-56
    • /
    • 2009
  • Vibration is an undesirable phenomenon in a dynamic system like lightly damped aerospace structures and active vibration control has gradually been employed to suppress vibration. The objective of the current investigation is to introduce an active torsional magneto-rheological (MR) fluid based damper for vibration control of a typical nose landing gear. They offer the adaptability of active control devices without requiring the associated large power sources. A torsional damper is designed and developed based on Bingham plastic shear flow model. The numerical analysis is carried out to estimate the damping coefficient and damping force. The designed damper is fabricated and an experimental setup is also established to characterize the damper and these results are compared with the analytical results. A typical FE model of Nose landing gear is developed to study the effectiveness of the damper. Open loop response analysis has been carried out and response levels are monitored at the piston tip of a nose landing gear for various loading conditions without damper and with MR-damper as semi-active device. The closed-loop full state feedback control scheme by the pole-placement technique is also applied to control the landing gear instability of an aircraft.

Nonlinear Crash Analyses and Comparison with Experimental Data for the Skid Landing Gear of a Helicopter (헬리콥터 강착장치 비선형 충돌해석 및 실험결과 비교)

  • 이상민;김동현;정세운
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.87-94
    • /
    • 2006
  • In this study, nonlinear crash analyses have been conducted for the skid landing gear of a helicopter. The realistic landing gear model of the commercial helicopter (SB427) is considered. Three-dimensional dynamic finite element model with variable thickness and material plastic behavior is constructed and LS-DYNA(Ver.970) is used to conduct nonlinear transient crash analyses for different impact conditions. Characteristics of nonlinear transient responses due to the ground crash are investigated for typical structural design criteria of a skid landing gear system. In addition, comparison results for maximum crash deformations of the skid landing gear are presented and the important effect of ground friction for numerical accuracy is described.

Effects of Knee Joint Muscle Fatigue and Overweight on the Angular Displacement and Moment of the Lower Limb Joints during Landing (무릎 관절 근육 피로와 과체중이 착지 시 하지 관절의 각변위와 모멘트에 미치는 영향)

  • Kim, Tae-Hyeon;Youm, Chang-Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.63-76
    • /
    • 2013
  • The purpose of this study was to investigate the effects of knee joint muscle fatigue and overweight on the angular displacement and moments of the lower limb joints during landing. Written informed consent forms, which were approved by the human subject research and review committee at Dong-A University, were provided to all subjects. The subjects who participated in this study were divided into 2 groups: a normal weight group and an overweight group, consisting of 15 young women each. The knee joint muscle fatigue during landing was found to increase the dynamic stability by minimizing the movements of the coronal and horizontal planes and maintaining a more neutral position to protect the knee. The effect of body weight during landing was better in the normal weight group than in the overweight group, with the lower limbs performing their shock-absorbing function in an efficient manner through increased sagittal movement. Therefore, accumulated fatigue of knee joint muscles or overweight may be highly correlated with the increase in the incidence of injury during landing after jumping, descending stairs, and downhill walking.

Application of the Lateral Subgrade Reaction Modulus in Landing Pier (잔교식 안벽 해석시 수평지반반력계수의 적용)

  • Park, See-Boum;Kim, Ji-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1707-1711
    • /
    • 2008
  • Landing pier is connect from onshore to offshore with bridge type that a coast structure. The sub-structure is consisted of vertical or batter pile and combined reinforced concrete slab. These days useful design method of quay wall of landing pier type for pile foundation analysis abide by approximate depth of pile supported method, "Harbor and port design criterion, 2005 The ministry of land transport and maritime affairs". The approximate depth of pile supported is calculated two kind of method that one is assume to below depth of 1/$\beta$ from assumed submarine surface and other is 1st fixpoint depth by Chang(1937)'s theory. By this paper, FEM dynamic analysis of 3-dimensions was achieved that it has compared pile fixed end modeling with elastic spring modeling base on winkler theory.

  • PDF

Semi-Active Control of Helicopter Landing Gear using Magneto-Rheological Damper (MR 댐퍼를 이용한 헬기 착륙장치 반능동제어)

  • Hwang, Jae-Up;Hwang, Jae-Hyuk;Bae, Jae-Sung;Hyun, Young-O;Lim, Kyoung-Ho;Kim, Doo-Man;Kim, Tae-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.346-351
    • /
    • 2008
  • In this paper, the semi-active control of a helicopter landing gear using magneto -rheological(MR) damper is studied. A dynamic model of the MR damper is formulated by incorporating magnetic field-dependent Bingham properties of the MR fluid. The electromagnet of the MR damper is designed and its magnetic field is analyzed using a commercial finite element code. The damping characteristics of MR damper by changing the intensity of the magnetic field are investigated and the dynamic responses of the helicopter landing gear with MR damper are simulated. The semi-active control of the helicopter landing gear is simulated by implementing a sky-kook control algorithm and its performance is evaluated comparing to the passive control.

Effect of Functional Ankle Instability and Surgical Treatment on Dynamic Postural Stability and Leg Stiffness Variables during Vertical-Drop Landing

  • Jeon, Kyoung Kyu;Kim, Kew Wan;Ryew, Che Cheong;Hyun, Seung Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.2
    • /
    • pp.135-141
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the effect of functional ankle instability (FAI) and surgical treatment (ST) on postural stability and leg stiffness during vertical-drop landing. Method: A total of 21 men participated in this study (normal [NOR]: 7, FAI: 7, ST: 7). We estimated dimensionless leg stiffness as the ratio of the peak vertical ground reaction force and the change in stance-phase leg length. Leg length was calculated as the distance from the center of the pelvis to the center of pressure under the foot. Furthermore, the analyzed variables included the loading rate and the dynamic postural stability index (DPSI; medial-lateral [ML], anterior-posterior [AP], and vertical [V]) in the initial contact phase. Results: The dimensionless leg stiffness in the FAI group was higher than that of the NOR group and the ST group (p = .018). This result may be due to a smaller change in stance-phase leg length (p = .001). DPSI (ML, AP, and V) and loading rate did not show differences according to the types of ankle instability during drop landing (p > .05). Conclusion: This study suggested that the dimensionless leg stiffness was within the normal range in the ST group, whereas it was increased by the stiffness of the legs rather than the peak vertical force during vertical-drop landing in the FAI group. Identifying these potential differences may enable clinicians to assess ankle instability and design rehabilitation protocols specific for the impairment.