• Title/Summary/Keyword: landfill area

Search Result 219, Processing Time 0.024 seconds

Electrical Surveys for Mapping Leachate in Nanji - Do Landfill Site (난지도 일대의 침출수 양태 조사를 위한 전기 비저항 탐사)

  • 김형수;이기화;한정상
    • The Journal of Engineering Geology
    • /
    • v.5 no.3
    • /
    • pp.259-276
    • /
    • 1995
  • Electrical soundings and profilings were conducted for mapping the leachate in the region of Nanji - Do Landfill site. The results of electrical surveys conducted in the landfill area show that the basal leachate is formed at the height about 30 m above the mean sea level and that there is abundant floating leachate over the basal leachate. The surveys conducted around the landfill reveal that the groundwater which may be contaminated by the leachate from the landfill flows to the Han River. The top of the basement rock in this area has been severely affected by polluted groundwater. The layer which is thoroughly saturated with leachate in this region has the very low resistivity value below 10 ohm - m and this low resistivity value indicates that the groundwater and geology are severely contaminated by the leachate and wastes of the landfill.

  • PDF

Integrating approach to size and site at a sanitary landfill in Selangor state, Malaysia

  • Younes, Mohammad Khairi;Basri, Noor Ezlin Ahmad;Nopiaha, Zulkifli Mohammad;Basri, Hassan;Abushammala, Mohammed F.M.;Maulud, Khairul Nizam Abdul
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.268-276
    • /
    • 2015
  • Solid waste production increases due to population and consumption increments. Landfill is the ultimate destination for all kinds of municipal solid waste; and is the most convenient waste disposal method in developing countries. To minimize investment and operational costs and society's opposition towards locating landfills nearby, proper landfill sizing and siting are essential. In this study, solid waste forecasting using Autoregressive Integrating Moving Average (ARIMA) was integrated with government future plans and waste composition to estimate the required landfill area for the state of Selangor, Malaysia. Landfill siting criteria were then prioritized based on expert's preferences. To minimize ambiguity and the uncertainty of the criteria prioritizing process, the expert's preferences were treated using integrated Median Ranked Sample Set (MRSS) and Analytic Hierarchy Process (AHP) models. The results show that the required landfill area is 342 hectares and the environmental criteria are the most important; with a priority equal to 48%.

매립쓰레기 및 선별토사의 공학적 및 환경적 특성 분석

  • 정하익;김상근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.210-213
    • /
    • 2001
  • There has been a steady increase in treatment of wastes buried in unplanned waste landfill situated in urban area and river side. This study was carried out to evaluate the geotechnical and environmental properties of soil sorted by classifier from wastes in unregulated landfill. The physical mechanical, and environmental properties of sorted soil were investigated for treatment of wastes and soil including landfill.

  • PDF

Measurement of VOC in the Ambient Air of a Small Scale Municipal Landfill Site -A Case Study at the Sampung-dong Landfill in Gyungsan City- (소규모 도시 생활폐기물 매립장 대기 중 VOC의 농도 측정 -경산시 삼풍동 매립장을 대상으로-)

  • 백성옥;김배갑;서영교
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.1
    • /
    • pp.59-68
    • /
    • 2004
  • In this study, we investigated the concentrations of volatile organic compounds (VOC) in the ambient air of a small scale municipal waste landfill site. Seasonal sampling was carried out simultaneously at two sites, i.e. one in the center of the landfill area, and the other at a boundary site. Among 38 target VOC, toluene appeared to be the most dominant compound, followed by benzene. and xylenes. The higher levels of BTX imply that paint -containing materials and/or organic solvents are the most significant sources of the VOC in the landfill environment. Seasonal variations for the samples collected at the landfill site indicated that the VOC concentrations tend to be higher in the spring and fall season and lower in the winter season. In addition, night- time concentrations appeared to be generally higher than day-time. Such daily variation might be due to more stabilized atmosphere during the night-time. Similar patterns were also found in samples collected at a boundary site. This study demonstrated that the municipal landfill, although it is small -scaled, could be an important emission source of atmospheric VOC, particularly in the vicinities of the landfill. Thus, an appropriate control strategy is required to prevent any undesirable secondary pollutions from the environmental sanitary facilities such as landfill.

Analysis of Soil Contamination with Depth in Non-sanitary Closed Waste Landfill (비위생 사용종료매립장의 심도별 토양오염도 분석)

  • Oh, Young-In;Kim, Kwan-Ho;Lee, Dong-Geon;Cho, Sook-Hee;Bak, Eun-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1217-1224
    • /
    • 2010
  • These days, the maintenance of closed waste landfill come to the fore social problem such as legal maintenance period, after closed maintenance deposits, stability evaluation guides and environmental survey for closed landfill management. Therefore the many non-sanitary closed waste landfill has been removed by selection and transfer to sanitary landfill and incineration. When the remove the non-sanitary landfill, the pollution level of bottom soil was investigated by related government law. In this case study, the soil contamination survey was performed to evaluate the pollution level of non-sanitary closed landfill bottom soil. Based on this study, the pollution level of studied non-sanitary landfill bottom soil was content with related government law for third area(factory, parking lot, gas station, road, railroad use etc.).

  • PDF

Biological Nitrification and Denitrification for Landfill Leachate Containing High Concentration of Ammonium-Nitrogen by using MLE Process (MLE 공정을 이용한 고농도 NH4+-N 함유 침출수의 생물학적 질산화/탈질)

  • Won, Jong-Choul;Namkoong, Wan;Bae, Young-Shin;Lee, Kyung-Shin;Park, Ki-Hyuk;Song, Su-Sung;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1027-1035
    • /
    • 2000
  • This study was carried out to investigate the treatability of landfill leachate having high concentration of ammonium nitrogen with/without the circulation of media in pilot-scale($48m^3basis$) process. Total nitrogen removal efficiency was relatively increased in the media added process (influent ; $1.230{\sim}2,000mg{\cdot}l^{-1}$, effluent ; $120{\sim}250mg{\cdot}l^{-1}$) compared with the control process. The difference of nitrogen removal efficiency between these processes may be due to that stable growth of nitrifiers attached to the media could be achieved 99.3% of ammonium-nitrogen removal efficiency(without ; 98.2%) and 88.5% of total nitrogen removal efficiency(without ; 85.8%) were shown in media added process, respectively. Also, optimum BOD/ $NH_4{^+}$-N ratio was relatively decreased in the media process compared with the control process. Sludge settleability, on the other hand. was shown better in media added process than in control process. This outstanding sludge settleability in the media added process indicates the compatibility of media(zeolite) to the microorganism and the possibility of using media of biofilm process.

  • PDF

Investigation of ground contamination and leachate leakage around waste landfill (폐기물매립지 주변 침출수 누출 및 지반오염 조사연구)

  • 정하익;김상근;정길수;이용수;조동행;강상구;지상근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.309-312
    • /
    • 1999
  • In recent years there has been a steady increase in geoenvironmental engineering projects where geotechnical engineering has been combined with environmental concerns. Many of these projects involve some investigation on contaminant and leachate flume in the ground and landfill. In this study, investigation on leachate around the waste landfill was carried out to detect the leaked and contaminated area. Many techniques such as geophysical, drilling and sampling method were applied. As a result of this study, the concentration of leachate and the point of leachate leaking around landfill were found out, and countermeasures for cut-off of leachate flow from landfill were investigated.

  • PDF

A Study on Utilization Plan of Nangido Landfill Using Digital Elevation Model (수치표고모형을 이용한 난지도 쓰레기 매립장의 이용계획에 관한 연구)

  • 이재기;조재호;이현직;이인성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.1
    • /
    • pp.19-27
    • /
    • 1993
  • For the design of a large-scale landfill, the future utilization plan of the landfill ought to precede based on the analysis of existing facility. Analysis for the present condition of reclamation must include accurate assesment of volume and other consideration such as urban scenery. In this study an optimum data interpolation scheme area/volume determination method based on the classification of topography were combined for the correct assessment of sweeping volume. Combined model was compared with the real data of Digital Elevation Model constructed by aero photography. The new model aims at providing basic information for the design and utilization of a new landfill. A a result of this study, we made an algorithm to perform the classification of the topography in the area of interest objectively. In addition, we decided optimal data interpolation scheme and area/volume calculation method for given topography. Finally, we applied the developed methodology to Nangido Landfill to assess current landfill situation and potential capacity when landfilling is resumed.

  • PDF

The Water Environment at the Seokdae Waste Landfill Area in the Pusan Metropolitan City (부산 석대 폐기물 매립지 일원의 수질 환경)

  • 정상용;권해우;이강근;김윤영
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.4
    • /
    • pp.175-184
    • /
    • 1997
  • The Seokdae Waste Landfill is a middle-sized site used from June, 1987 to May, 1993. Many joints and faults are developed in andesitic rocks and rhyolitic rocks distributed at the landfill. The chemical analyses of leachates, streams and groundwaters sampled in July, 1996 and June, 1997 show that the concentrations of leachates and streams were decreased, and that the groundwater qualities became worse. The groundwater contamination is deeply extended to not only shallow groundwater but also bedrock-groundwater around the Seokdae Waste Landfill Area. The range of groundwater contamination by the leachates is about 500 m to the west and about 1 km to the south from the boundaries of the waste landfill. The development of monitoring wells and pumping wells, the construction of a leachate-treatment facilities, and the adjustment of the existing grout curtains are necessary for the control of water pollution at the Seokdae Waste Landfill Area.

  • PDF

Natural radioactivity level in fly ash samples and radiological hazard at the landfill area of the coal-fired power plant complex, Vietnam

  • Loan, Truong Thi Hong;Ba, Vu Ngoc;Thien, Bui Ngoc
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1431-1438
    • /
    • 2022
  • In this study, natural radioactivity concentrations and dosimetric values of fly ash samples were evaluated for the landfill area of the coal-fired power plant (CFPP) complex at Binh Thuan, Vietnam. The average activity concentrations of 238U, 226Ra, 232Th and 40K were 93, 77, 92 and 938 Bq kg-1, respectively. The average results for radon dose, indoor external, internal, and total effective dose equivalent (TEDE) were 5.27, 1.22, 0.16, and 6.65 mSv y-1, respectively. The average emanation fraction for fly ash were 0.028. The excess lifetime cancer risks (ELCR) were recorded as 20.30×10-3, 4.26×10-3, 0.62×10-3, and 25.61×10-3 for radon, indoor, outdoor exposures, and total ELCR, respectively. The results indicated that the cover of shielding materials above the landfill area significantly decreased the gamma radiation from the ash and slag in the ascending order: Zeolite < PVC < Soil < Concrete. Total dose of all radionuclides in the landfill site reached its peak at 19.8 years. The obtained data are useful for evaluation of radiation safety when fly ash is used for building material as well as the radiation risk and the overload of the landfill area from operation of these plants for population and workers.