• Title/Summary/Keyword: land-land breeze

Search Result 114, Processing Time 0.026 seconds

Variation of sulfur dioxide concentrations at Kangnung under the Influence of Regional Meteorology for the Period of Yellow Sandy Dusts in Spring (봄철 황사기간중 지역기상 영향에 의한 강릉지역에서의 아황산가스 농도 변화)

  • Choi, Hyo
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.131-140
    • /
    • 1996
  • Analysis of hourly variations of sulfur dioxide ($SO_2$) concentrations affected by regional climates for the period of yellow sandy dusts was carried out from March 31 through April 9, 1993. The concentration of 50, at a coastal city, Kangnung city, was much higher than that at an inland city Wonju in the west, but the hourly distrbutions of $SO_2$ concentrations show a similar tendency at both cities. Under the prevailing synoptic-scale westerly winds blowing over a high Mt. Taegualyang in the west toward Kangnung city in the eastern coastal region, the $SO_2$ at Kangnung is trapped by an easterly sea-breeze during the day and under prevailing easterly winds, it is also isolated by the high wall of Mt. Taegualyang, with its high concentration from 14 to 16 LST. Furthermore, when the westerly winds were dominent all day long the high $SO_2$ concentrations at Kangnung were produced by its intrusion from a urban city, Wonju or China in the west into a mountainous coastal city, Kangnung, to some extent, and when the air becomes rapidly cooled down at the clear daytime or the nighttime, their concentrations are also increased by a great amount of heating fuel combustion. Especilly, its maximum concentrations were shown in Wonju and Kangnung from 08 LST through 10 LST, due to the increase of auto vehicles near the beginning time of office hour and were detected again after sunset due to both increases of vehicles at the end of office hour and heating fuel combustion. During the period of Yellow Sandy Dusts which are transported from China into Korea, the $SO_2$ concentrations on rainy days at Wonju and Kangnung were much lower than the monthly mean values of $SO_2$, and their low concentrations could be caused by the scavenging process of rain.

  • PDF

Numerical Study on the Impact of SST Spacial Distribution on Regional Circulation (상세 해수면 온도자료의 반영에 따른 국지 기상정 개선에 관한 수치연구)

  • Jeon, Won-Bae;Lee, Hwa-Woon;Lee, Soon-Hwan;Choi, Hyun-Jung;Leem, Heon-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.304-315
    • /
    • 2009
  • Numerical simulations were carried out to understand the effect of Sea Surface Temperature (SST) spatial distribution on regional circulation. A three-dimensional non-hydrostatic atmospheric model RAMS, version 6.0, was applied to examine the impact of SST forcing on regional circulation. New Generation Sea Surface Temperature (NGSST) data were implemented to RAMS to compare the results of modeling with default SST data. Several numerical experiments have been undertaken to evaluate the effect of SST for initialization. First was the case with NGSST data (Case NG), second was the case with RAMS monthly data (Case RM) and third was the case with seasonally averaged RAMS monthly data (Case RS). Case NG showed accurate spatial distributions of SST but, the results of RM and RS were $3{\sim}4^{\circ}C$ lower than buoy observation data. By analyzing practical sea surface conditions, large difference in horizontal temperature and wind field for each run were revealed. Case RM and Case RS showed similar horizontal and vertical distributions of temperature and wind field but, Case NG estimated the intensity of sea breeze weakly and land breeze strongly. These differences were due to the difference of the temperature gradient caused by different spatial distributions of SST. Diurnal variations of temperature and wind speed for Case NG indicated great agreement with the observation data and statistics such as root mean squared error, index of agreement, regression were also better than Case RM and Case RS.

Dispersion of Maritime Air Pollutants from Harbor Area into Major Port Cities Considering Characteristics of Local Wind Circulation in Korea -A Case Study of Sea and Land Breezes during Summer- (지역 순환풍 발생 특성 이해를 통한 국내 주요항만 발생 대기오염물질의 항구도시 영향 범위 분석 -여름철 해륙풍 모사를 중심으로-)

  • Kwon, Yongbum;Cho, Inhee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.721-730
    • /
    • 2021
  • Maritime air pollutants around port cities have gained a great deal of attention due to their direct impacts on regional air quality. This study aims to determine the geographical properties of sea/land breezes in different areas to discover overall ranges of maritime emission dispersion. The HOTMAC-RAPTAD modeling program was used to simulate regional-scale air dispersion considering non-linear and unsteady states during the general summer period for the target areas of the Yellow Sea (Incheon Port and Pyeongtaek·Dangjin Ports), archipelago region (Mokpo Port), South and East Sea (Busan and Masan Ports) and East Sea with mountainous area (Donghae·Mukho Ports). The resulting dispersion lengths of vessel emissions into the onshore regions around the target ports shed light on portal air quality management, because vessel emissions from the Incheon, Mokpo, Busan, and Donghae·Mukho ports were transported 27-31km (Western Seoul), 21-24km (Southern Muan), 20-26km (Gimhae and Yangsan), and 22-25km (Taebeak Mountains), respectively. Therefore, the results of this study provide useful data for regional air quality management and marine air pollution mitigation to improve the sustainability of port cities.

Surface Ozone in The Major Cities of Korea : Trends, Diurnal and Seasonal Variations, and Horizontal Distributions (한반도 주요 대도시지역의 지표오존 특성 : 추세, 일변화, 월변화, 수평분포)

  • 오인보;김유근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.4
    • /
    • pp.253-264
    • /
    • 2002
  • Surface ozone concentrations measured at 40 monitoring sites in three major cities (Seoul, Busan, and Daegu) of Korea during 1993~2000 were analyzed to understand the characteristics of temporal and spatial distributions. Trends were analyzed for annual mean, 95th percentiles of daily 8-hour maximum and days exceeding 8-h ozone standard of 60 ppb. Three indicators exhibited increasing trends (+0.75 ppb yr$^{-1}$ , +2.20 ppb yr$_{-1}$ , and +5.35 days yr$_{-1}$ on average) throughout the study period at all cities. Diurnal and seasonal variations were the largest in Seoul followed by Daegue and Busan, due to the high photochemical production and titration of ozone (Seoul), strong wind and constant supply of background ozone from the ocean (Busan). In the urban centers and industrial areas at all cities, scavenging of ozone by NO reduces the daily 8-hour maximum ozone by 10 ppb on average. High concentrations of ozone have frequently occurred in downwind eastern (Seoul and Daegu) or northern (Busan) sides of the territory. In particular, the coastal area of Busan had relatively high ozone level due to the local sea land breeze circulation. The results indicated that the temporal and spatial variations of ozone concentration were non -uniform and were closely related to the local environments; emission levels, climates, and geographic locations.

Characteristics of Ozone Advection in Vertical Observation Analysis Around Complex Coastal Area (연직관측자료를 통한 복잡 연안지역의 오존 이류특성)

  • Lee, Hwa-Woon;Park, Soon-Young;Lee, Soon-Hwan;Leem, Heon-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.1
    • /
    • pp.57-74
    • /
    • 2009
  • In order to clarify the vertical ozone distribution in planetary boundary layer of coastal area with complex terrain, an observation campaign was carried out around Gwangyang Bay with dense pollutant emission sources during two days from June, 4 2007. For this observation are Radiosonde, SODAR(SOnic Detection And Ranging) and Tethered ozone sonde were employed. The surface meteorological and photochemical observation data provided by AWS (Automatic Weather System) and AQMS (Air Quality Monitoring System) were also applied for analysis. Synoptic condition is strongly associated with lower level ozone distribution in complex terrain coastal area. Since mesoscale circulation induced by difference of characteristics of land and sea and orographic forcing is predominant under calm synoptic condition, vertical distribution of ozone is complicate and vertical ozone concentration greatly fluctuated. However in second day when synoptic influence become strong, ozone concentration in lower levels is vertically uniform regardless of observation level. This results in vertical observation indicates that vertical ozone distribution is often determined by synoptic condition and also affects surface ozone concentration.

Intercomparison of Wind and Air Temperature Fields of Meteorological Model for Forecasting Air Quality in Seoul Metropolitan Area (수도권지역 대기질 예측을 위한 기상장 모델의 바람장과 온도장 비교 연구)

  • Jeong, Ju-Hee;Kim, Yoo-Keun;Moon, Yun-Seob;Hwang, Mi-Kyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.640-652
    • /
    • 2007
  • The MM5, RAMS and WRF, meteorological models have provided the dynamical parameters as inputs to air quality model. A major content of this study is that significant characteristics of three models for high-ozone occurrence analyze for surface wind and air temperature fields and compare with observation data in Seoul metropolitan area. An analysis of air temperature field revealed that location of core in high temperature of MM5 and WRF differed from that of RAMS. MM5 and WRF indicated high temperature in Seoul but RAMS represented it on the outskirts of Seoul. MM5 and WRF were underestimated maximum temperature during daytime but RAMS simulated similar value with observation data. Surface wind field with three models, it was shown many differences at horizontal distribution of wind direction. RAMS indicated weak wind speed in land and strong sea breeze at coastal areas than MM5 and WRF. However wind speed simulated by three model were overestimated during both daytime and nighttime.

A study on high ozone concentration in Shiwha.Banwol industry complex using photochemical air pollution model- Analysis of meteorological characteristics - (시화.반월단지지역의 고농도 오존일에 대한 광화학모델 적용 연구 - 기상특성에 대한 분석 -)

  • An, Jae-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.47-59
    • /
    • 2011
  • The purpose of this paper is to simulate the high ozone concentration in Shiwha Banwol indusrial complex. High pollution episodes (ozone alert) of this area are the results of geographical location and its air pollutants emission. This research has used meteorological model (RAMS) and photochemical air pollution Model (CIT model). As first step of the evaluate of this combined model system simulations are done in terms of meteorological characteristics like wind fields, PBL-height, etc.. Numerical simulations are carried out with real meteorological synoptic data on June. 24-25, 2010. In comparison with real measurement and another research the model reflects well local meteorological phenomena and shows the possibility to be utilized to analyse the pollutant dispersion over irregular terrain region. The high ozone concentration is deeply correlated to the ambient air temperature, wind speed and solar radiation. Local meteorological phenomena like sea-land breeze impact on horizontal dispersion of ozone. This analysis of meteorological characteristics can, in turn, help to predict their influences on air quality and to manage the high ozone episodes.

Effect of Wind Break on the Early Growth of Pinus thunbergii at Saemangum Sea-wall (새만금 방조제에서 곰솔의 초기 생장에 미치는 방풍 시설 설치 효과)

  • Kim, Jeong-Hwan;Lim, Joo-Hoon;Seo, Kyung-Won;Jeong, Yong Ho;Um, Tae-Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.210-218
    • /
    • 2013
  • The sea breeze shows different characteristics compared to land breeze, such as high wind speed and more rapider shift period. One of the major factors affecting plant early growth is wind speed. In the early growth stage, tree growth-rates rise with decreasing wind speed. Thus, the study was performed to identify wind break effects on wind characteristics and tree growth. The wind break used in this study was about 130 meters length and 3 meters height, made up with poly-ethylene (with 40% openness). We installed one vane and fifteen anemographs at three different heights (1, 2 and 3 meters) on the inner and outer wind break areas. The wind characteristic and plant growth data were collected from Jun. 2011 to Oct. over 2012. The wind rose of the Saemangum seawall area presented the north (21.5%) and it was followed by north-west (18.1%), east (14.9%) and north-east (13.7%) and the remainder with other directions. Wind speeds at height were different. The tree height was 159.6 cm at inside and 129.6 cm at outside. The diameter at root-collar was 36.9 mm at inside and 32.6 mm at outside from wind break.

Analysis of Chemical and Meteorological Effects on the Concentration Difference of Photochemical Air Pollutants between Coastal and Inland Regions in Busan (부산시 해안 및 내륙지역에서 광화학 오염물질의 농도 차이에 영향을 주는 화학 및 기상조건 분석)

  • Sang, Sang-Keun;Shon, Zang-Ho
    • Journal of Environmental Science International
    • /
    • v.17 no.10
    • /
    • pp.1169-1182
    • /
    • 2008
  • The chemical and meteorological effects on the concentration variations of air pollutants ($O_3$ and its precursors) were evaluated based on ground observation data in coastal and inland regions, Busan during springs and summers of 2005-2006. For the purpose of this study, study areas were classified into 5 categories: coastal area (CA), industrial area (IA), downtown area (DA), residential area (RA), and suburban area (SA). Two sites of Dongsam (DS) and Yeonsan (YS) were selected for the comparison purpose between the coastal and inland regions. $O_3$ concentrations in CA and SA were observed to be highest during spring (e.g., 40 ppb), whereas those in DA and RA were relatively low during summer (e.g., $22\sim24$ ppb). It was found that $O_3$ concentrations in IA were not significantly high although high VOCs (especially toluene of about 40 ppb) and $NO_x$ ($\geq$ 35 ppb) were observed. On the other hand, the concentration levels of $O_3$ and $PM_{10}$ at the DS site were significantly higher than those at the YS site, but $NO_x$ was slightly lower than that at the YS site. This might be caused by the photochemical activity and meteorological conditions (e.g., sea-land breeze and atmospheric stagnance). When maximum $O_3$ (an index of photochemical activity) exceeds 100 ppb, the contribution of secondary $PM_{10}\;((PM_{10})_{SEC})$ to total observed $PM_{10}$ concentrations was estimated up to 32% and 17% at the DS and YS sites, respectively. In addition, the diurnal variations of $(PM_{10})_{SEC}$ at the DS site were similar to those of $O_3$ regardless of season, which suggests that they are mostly secondary $PM_{10}$ produced from photochemical reactions.

Analysis of Wave Parametric Characteristics using WAVEWATCH-III Model and Observed Buoy Data (파랑모델과 부이 자료를 이용한 파랑인자 특성 분석)

  • 장유순;서장원;김태희;윤용훈
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.274-284
    • /
    • 2003
  • The analysis of wave parametric characteristics in sea regions in the vicinity of Korean Peninsula have been carried out using the third generation wave model, WAVEWATCH-III (Tolman, 1999) and four observed buoy data of Korea Meteorological Administration (KMA). Significant wave height increases about 2-3 hours later after the increase of wind speed. Maximum correlation coefficient between two parameters appears in Donghae buoy data, which is at off-shore region. When land breeze occurs, it can be found that the correlation coefficient decreases. Time differences between wind speeds and wave heights correspond to significant tidal periods at all of the buoy locations except for Donghae buoy. After verifying the WAVEWATCH-III model results by the comparing with observed buoy data, we have carried out numerical experiments near the Kuroshio current and East Sea areas, and then reconfirmed that when there exist an opposite strong current in the propagation direction of the waves or wind direction, wave height and length get higher and shorter, respectively and vice versa. It has been shown that these modulations of wave parameters are considerable when wind speed is week or mean current is relatively strong, and corresponding values have been represented.