Analysis of Wave Parametric Characteristics using WAVEWATCH-III Model and Observed Buoy Data

파랑모델과 부이 자료를 이용한 파랑인자 특성 분석

  • 장유순 (기상연구소 해양기상지진연구실) ;
  • 서장원 (기상연구소 해양기상지진연구실) ;
  • 김태희 (기상연구소 해양기상지진연구실) ;
  • 윤용훈 (기상연구소 해양기상지진연구실)
  • Published : 2003.08.01

Abstract

The analysis of wave parametric characteristics in sea regions in the vicinity of Korean Peninsula have been carried out using the third generation wave model, WAVEWATCH-III (Tolman, 1999) and four observed buoy data of Korea Meteorological Administration (KMA). Significant wave height increases about 2-3 hours later after the increase of wind speed. Maximum correlation coefficient between two parameters appears in Donghae buoy data, which is at off-shore region. When land breeze occurs, it can be found that the correlation coefficient decreases. Time differences between wind speeds and wave heights correspond to significant tidal periods at all of the buoy locations except for Donghae buoy. After verifying the WAVEWATCH-III model results by the comparing with observed buoy data, we have carried out numerical experiments near the Kuroshio current and East Sea areas, and then reconfirmed that when there exist an opposite strong current in the propagation direction of the waves or wind direction, wave height and length get higher and shorter, respectively and vice versa. It has been shown that these modulations of wave parameters are considerable when wind speed is week or mean current is relatively strong, and corresponding values have been represented.

본 연구에서는 제 3세대 파랑 모형인 WAVEWATCH-III모델 (Tolman, 1999)과 기상청 해양기상 관측부이(4기) 자료를 이용하여 파랑인자 특성에 관한 분석이 이루어졌다. 풍속이 증가한 후 약 2-3시간 후에 유의파고가 커지고, 풍속과 유의파고의 상관성은 비교적 외해에 위치한 동해 부이에서 크게 나타났다. 육풍 발생 시 두 인자 사이의 상관계수 값이 급격히 떨어졌으며, 풍속과 파고 편차 시계열 자료에서는 동채부이를 제외하고 지배적인 조석주기가 발견되었다 부이 자료와의 비교를 통하여 WAVEWATCH-III모델의 파랑 모의 성능을 진단한 후에, 쿠로시오 해역과 동해 해역의 수치 실험을 통해서 파랑의 진행 방향에 대해 반대 방향으로 해류가 흐를 때는 파고는 높아지고, 파장은 짧아진다는 사실을 재확인했다. 또한 이러한 효과는 풍속이 약하거나 해류가 강할 때 더 커지는 양상을 나타냈으며 이에 대한 정량적인 결과를 제시하였다.

Keywords

References

  1. 한국해안 · 해양공학회지 v.Ⅴ1 no.1 흐름이 존재하는 완경사 해역에서의 파랑변형-이론적 고찰 채장원;정신택;염기태;안수한
  2. 한국해안 · 해양공학회지 v.Ⅴ4 no.1 흐름이 존재하는 완경사 해역에서의 파랑변형-수치모형실험 정신택;채장원;정원무
  3. 한국해안 · 해양공학회지 v.Ⅴ6 no.3 Current-Depth Refraction and Diffraction Model for Irregular Waves 정신택;채장원
  4. J. Phys. Oceanogr. v.13 On the balance between growth and dissipation in an extreme depth-Iimited wind-sea in the southern North Sea Bouws,E.;G.J.Komen https://doi.org/10.1175/1520-0485(1983)013<1653:OTBBGA>2.0.CO;2
  5. Evaluation of the impact of the availability of wind fields in the Mediterranean Seafinal report, ESA-ESRIN study contract 7458/88 HE-I Cavaleri,L.;L.Bertotti;P.Lionello
  6. Univ. Denmark, Series paper v.30 Current depth refraction of dissipates water waves. Institute of Hydrodynamics and Hydraulic Engineering, Techn, Christoffersen,J.B.
  7. J. Geophys. Res. v.C96 Effects of the Gulf Stream in ocean waves Holthuijsen,L.H.;H.L.Tolman
  8. Ocean and Polar Research v.24 no.1 Seasonal Variation of Global volume Transport Calculated from an Ocean General Circulation Model Jang,C.J.;Y,Noh.;C.H.Kim https://doi.org/10.4217/OPR.2002.24.1.001
  9. J. Phys. Oceanogr. v.14 On the existence of a fully developed wind sea spectrum Komen,G.J.;K.Hasselmann;S.Hasselmann https://doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2
  10. Waves in the Ocean. Elsevier LeBlond,P.H.;L.A.Mysak
  11. Seoul National Univ. Ph. D. Thesis Development of a coupled ocean wave-circulation model and its applications to numerical experiments for wind waves, storm surges and ocean circulation of the Yellow and East China Seas Moon,I.J.
  12. La mer. v.30 Wave characteristics changes under a strong tidal current influence Oh,I.S.;Y.Y.Kim
  13. J. Wtrway. Port. Coast. Oc. Engrg. v.116 no.3 Numerical simulation of irregular wave propagation over shoal Panchang,V.G.;Wei,G.;Pearce,B.R.;Briggs,M.J. https://doi.org/10.1061/(ASCE)0733-950X(1990)116:3(324)
  14. Advances in applied mechanics v.16 Interaction of water waves and currents Peregrine,D.H.
  15. The Dynamics of the Upper Ocean(2nd ed.) Phillips,O.M.
  16. J. Kor. Soc. Coastal and ocean Engineers v.Ⅴ4 no.4 Review of Transformation of Wave Spectra Due to Depth and Current Suh,K.D.
  17. Communications on Hydraulic and Geotechnical Engineering, Delft Univ. of Techn. Rep. v.89 no.2 The numerical model WAVEWATCH: a third generation model for the hindcasting of wind waves on tides in shelf seas Tolman,H.L.
  18. J. Phys. Oceanogr. v.21 A third-generation model for wind waves on slowly varying, unsteady and inhomogeneous depths and current Tolman,H.L. https://doi.org/10.1175/1520-0485(1991)021<0782:ATGMFW>2.0.CO;2
  19. J. Phys. Oceanogr. v.22 Effects of numerics on the physics in a thirdgeneration wind-wave model. Tolman,H.L. https://doi.org/10.1175/1520-0485(1992)022<1095:EONOTP>2.0.CO;2
  20. Technical Note, NCAR NWS Ocean Modeling Branch User manual and system documentation of WAVEWATCH-Ⅲ (Version 1.18) Tolman,H.L.
  21. J. Wtrway. Port. Coast. Oc. Engrg. v.115 no.2 Refraction-diffraction of irregular waves over a mound Vincent,C.L.;Briggs,M.T. https://doi.org/10.1061/(ASCE)0733-950X(1989)115:2(269)
  22. Linear and Nonlinear Waves Whitham,G.B.
  23. J. Atmos. Sci. v.33 On the similarity functions A,B and C of the planetary boundary layer Yamada,T. https://doi.org/10.1175/1520-0469(1976)033<0781:OTSFAO>2.0.CO;2