• Title/Summary/Keyword: Waves

Search Result 7,227, Processing Time 0.032 seconds

A Motion Response Analysis of a Floating Body of Barge-type in Stokes Waves (Stokes 파 중의 바지형 부유체의 운동 응답 해석)

  • Lee, Seung-Chul;Goo, Ja-Sam
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.18-23
    • /
    • 2017
  • The Stokes waves representing the deep sea waves are expressed as a superposition of several linear waves. To evaluate the motions of floating bodies in the deep seas, it is necessary to evaluate the motions of the bodies in the Stokes waves. The 5th-order Stokes waves are expressed as a superposition of 5 linear waves. Therefore, the motion responses of the bodies in the Stokes waves would be expressed as a superposition of the motion responses of the bodies in the each linear waves. In this research, The experimental results were compared with the numerical results in linear waves and Stokes waves.

Nonlinear response of stiffened triceratops under impact and non-impact waves

  • Chandrasekaran, Srinivasan;Nassery, Jamshed
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.179-193
    • /
    • 2017
  • Dynamic response analysis of offshore triceratops with stiffened buoyant legs under impact and non-impact waves is presented. Triceratops is relatively new-generation complaint platform being explored in the recent past for its suitability in ultra-deep waters. Buoyant legs support the deck through ball joints, which partially isolate the deck by not transferring rotation from legs to the deck. Buoyant legs are interconnected using equally spaced stiffeners, inducing more integral action in dispersing the encountered wave loads. Two typical nonlinear waves under very high sea state are used to simulate impact and non-impact waves. Parameters of JONSWAP spectrum are chosen to produce waves with high vertical and horizontal asymmetries. Impact waves are simulated by steep, front asymmetric waves while non-impact waves are simulated using Stokes nonlinear irregular waves. Based on the numerical analyses presented, it is seen that the platform experiences both steady state (springing) and transient response (ringing) of high amplitudes. Response of the deck shows significant reduction in rotational degrees-of-freedom due to isolation offered by ball joints. Weak-asymmetric waves, resulting in non-impact waves cause steady state response. Beat phenomenon is noticed in almost all degrees-of-freedom but values in sway, roll and yaw are considerably low as angle of incidence is zero degrees. Impact waves cause response in higher frequencies; bursting nature of pitch response is a clear manifestation of the effect of impact waves on buoyant legs. Non-impact waves cause response similar to that of a beating phenomenon in all active degrees-of-freedom, which otherwise would not be present under normal loading. Power spectral density plots show energy content of response for a wide bandwidth of frequencies, indicating an alarming behaviour apart from being highly nonlinear. Heave, being one of the stiff degrees-of-freedom is triggered under non-impact waves, which resulted in tether tension variation under non-impact waves as well. Reduced deck response aids functional requirements of triceratops even under impact and non-impact waves. Stiffened group of buoyant legs enable a monolithic behaviour, enhancing stiffness in vertical plane.

Critical earthquake loads for SDOF inelastic structures considering evolution of seismic waves

  • Moustafa, Abbas;Ueno, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.1 no.2
    • /
    • pp.147-162
    • /
    • 2010
  • The ground acceleration measured at a point on the earth's surface is composed of several waves that have different phase velocities, arrival times, amplitudes, and frequency contents. For instance, body waves contain primary and secondary waves that have high frequency content and reach the site first. Surface waves are composed of Rayleigh and Love waves that have lower phase velocity, lower frequency content and reach the site next. Some of these waves could be of more damage to the structure depending on their frequency content and associated amplitude. This paper models critical earthquake loads for single-degree-of-freedom (SDOF) inelastic structures considering evolution of the seismic waves in time and frequency. The ground acceleration is represented as combination of seismic waves with different characteristics. Each seismic wave represents the energy of the ground motion in certain frequency band and time interval. The amplitudes and phase angles of these waves are optimized to produce the highest damage in the structure subject to explicit constraints on the energy and the peak ground acceleration and implicit constraints on the frequency content and the arrival time of the seismic waves. The material nonlinearity is modeled using bilinear inelastic law. The study explores also the influence of the properties of the seismic waves on the energy demand and damage state of the structure. Numerical illustrations on modeling critical earthquake excitations for one-storey inelastic frame structures are provided.

Wave Force Acting on Cylinders in Transient Waves (과도 수파중의 복합실린더에 작용하는 쇄파력에 관한 연구)

  • 조효제;구자삼;이상길
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.220-226
    • /
    • 2001
  • It is important to estimate exactly wave forces acting on various types of offshore structures under the severe environmental conditions in the ocean site. This paper presents an easy experimental method which deals with transient waves. The proposed scheme made it possible to generate breaking waves at any position in the wave tank by changing the maximum slope of the component waves. The theoretical and experimental methods were investigated by generating concentrated waves which acted on a single and multiple cylinders. The waves forces increased rapidly when the models encountered breaking waves. The theoretical results underestimates the forces due to breaking waves. Therefore, the effects due to breaking waves should be considered carefully in the design process of a structure under the influence of breaking waves.

  • PDF

Wave Force Acting on Cylinders in Transient Waves (과도 수파중의 복합실린더에 작용하는 쇄과력에 관한 연구)

  • 조효제;구자삼;이상길
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.8-13
    • /
    • 2001
  • It is important to estimate exactly wave forces acting on various types of offshore structures under the severe environmental conditions in the ocean site. This paper presents an easy experimental method which deals with transient waves. The proposed scheme made it possible to generate breaking waves at any position in the wave tank by changing the maximum slope of the component waves. The theoretical and experimental methods were investigated by generating concentrated waves which acted on a single and multiple cylinders. The waves forces increased rapidly when the models encountered breaking waves. The theoretical results underestimates the forces due to breaking waves. Therefore, the effects due to breaking waves should be considered carefully in the design process of a structure under the influence of breaking waves.

  • PDF

Behavior of Regular Waves and Multi-Directional Random Waves Passing a Breakwater (방파제를 통과하는 규칙파와 다방향 불규칙파랑의 거동)

  • Park, Sang-Il;Park, Jin-Ho;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.439-442
    • /
    • 2008
  • Diffraction of multi-directional random waves passing semi-infinite breakwater is investigated by using analytic solution derived by Penny and Prices(1952). An irregylarity of period and incident angle of waves and regular periods for regular waves are considered in addition by expanding from the past study which used only monochromatic wave in general. The Bretschneider-Mitsuyasu frequency spectrum and Mitsuyasu directional spectrum are used for incident waves. And diffraction of multi-directional random waves is reappeared by decomposing numerical results of several monochromatic waves which have variable period and incident angle. Analytic solution on the diffraction of regular waves and multi-directional random waves calculated in this study.

  • PDF

Magnetopause Waves Controlling the Dynamics of Earth's Magnetosphere

  • Hwang, Kyoung-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Earth's magnetopause separating the fast and often turbulent magnetosheath and the relatively stagnant magnetosphere provides various forms of free energy that generate low-frequency surface waves. The source mechanism of this energy includes current-driven kinetic physical processes such as magnetic reconnection on the dayside magnetopause and flux transfer events drifting along the magnetopause, and velocity shear-driven (Kelvin-Helmholtz instability) or density/pressure gradient-driven (Rayleigh-Taylor instability) magnetohydro-dynamics (MHD) instabilities. The solar wind external perturbations (impulsive transient pressure pulses or quasi-periodic dynamic pressure variations) act as seed fluctuations for the magnetopause waves and trigger ULF pulsations inside the magnetosphere via global modes or mode conversion at the magnetopause. The magnetopause waves thus play an important role in the solar wind-magnetosphere coupling, which is the key to space weather. This paper presents recent findings regarding the generation of surface waves (e.g., Kelvin-Helmholtz waves) at the Earth's magnetopause and analytic and observational studies accountable for the linking of the magnetopause waves and inner magnetospheric ULF pulsations, and the impacts of magnetopause waves on the dynamics of the magnetopause and on the inner magnetosphere.

Parametric pitch instability investigation of Deep Draft Semi-submersible platform in irregular waves

  • Mao, Huan;Yang, Hezhen
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • Parametric pitch instability of a Deep Draft Semi-submersible platform (DDS) is investigated in irregular waves. Parametric pitch is a form of parametric instability, which occurs when parameters of a system vary with time and the variation satisfies a certain condition. In previous studies, analyzing of parametric instability is mainly limited to regular waves, whereas the realistic sea conditions are irregular waves. Besides, parametric instability also occurs in irregular waves in some experiments. This study predicts parametric pitch of a Deep Draft Semi-submersible platform in irregular waves. Heave motion of DDS is simulated by wave spectrum and response amplitude operator (RAO). Then Hill equation for DDS pitch motion in irregular waves is derived based on linear-wave theory. By using Bubnov-Galerkin approach to solve Hill equation, the corresponding stability chart is obtained. The differences between regular-waves stability chart and irregular-waves stability chart are compared. Then the sensitivity of wave parameters on DDS parametric pitch in irregular waves is discussed. Based on the discussion, some suggestions for the DDS design are proposed to avoid parametric pitch by choosing appropriate parameters. The results indicate that it's important and necessary to predict DDS parametric pitch in irregular waves during design process.

Nonlocal effects on propagation of waves in a generalized thermoelastic solid half space

  • Singh, Baljeet;Bijarnia, Rupender
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.473-479
    • /
    • 2021
  • The propagation of plane waves in a linear, homogeneous and isotropic nonlocal generalized thermoelastic solid medium is considered in the framework of Lord and Shulman generalization. The governing field equations are formulated and specialized in a plane. Plane wave solutions of governing equations show that there exists three plane waves, namely, P, thermal and SV waves which propagate with distinct speeds. Reflection of P and SV waves from thermally insulated or isothermal boundary of a half-space is considered. The relevant boundary conditions are applied at stress free boundary and a non-homogeneous system of three equations in reflection coefficients is obtained. For incidence of both P and SV waves, the expressions for energy ratios of reflected P, thermal and SV waves are also obtained. The speeds and energy ratios of reflected waves are computed for relevant physical constants of a thermoelastic material. The speeds of plane waves are plotted against nonlocal parameter and frequency. The energy ratios of reflected waves are also plotted against the angle of incidence of P wave at a thermally insulated stress-free surface. The effect of nonlocal parameter is shown graphically on the speeds and energy ratios of reflected waves.

A Study on Response Functions of Manoeuvring Motion of a Ship in Regular Waves (규칙파에 대한 조종운동의 응답함수에 관한 고찰)

  • 손경호;이경우;김진형
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.11-21
    • /
    • 1994
  • Final aim of this paper is a study on simulation of automatic steering of a ship in random seas. In order to achieve this aim, we need excitation due to random seas. The excitation may be estimated from energy spectrum of irregular waves and response functions of manoeuvring motion of a ship in regular waves. This paper deals with response functions of manoeuvring motion of a ship in regular waves. We discussed New Strip Method(NSM) of sway-yaw-roll coupled motions in regular waves. NSM is defined in space axes system and that has been used to predict seakeeping performance of a ship in waves. But ship manoeuvring is defined in body fixed axes system. So we cannot use NSM theory itself in predicting manoeuvring performance of a ship in waves. We introduced relationship between space axes system and body fixed axes system. And we developed modified NSM which was defined in body fixed axes system and was able to be used in manoeuvring motion of a ship in waves. We calculated sway and yaw response functions of manoeuvring motion of a bulk carrier in regular waves.

  • PDF