DOI QR코드

DOI QR Code

Dispersion of Maritime Air Pollutants from Harbor Area into Major Port Cities Considering Characteristics of Local Wind Circulation in Korea -A Case Study of Sea and Land Breezes during Summer-

지역 순환풍 발생 특성 이해를 통한 국내 주요항만 발생 대기오염물질의 항구도시 영향 범위 분석 -여름철 해륙풍 모사를 중심으로-

  • Kwon, Yongbum (Korea-Russia Innovation Center, Korea Institute of Industrial Technology) ;
  • Cho, Inhee (Korea-Russia Innovation Center, Korea Institute of Industrial Technology)
  • 권용범 (한국생산기술연구원 한러혁신센터) ;
  • 조인희 (한국생산기술연구원 한러혁신센터)
  • Received : 2021.08.13
  • Accepted : 2021.10.28
  • Published : 2021.10.31

Abstract

Maritime air pollutants around port cities have gained a great deal of attention due to their direct impacts on regional air quality. This study aims to determine the geographical properties of sea/land breezes in different areas to discover overall ranges of maritime emission dispersion. The HOTMAC-RAPTAD modeling program was used to simulate regional-scale air dispersion considering non-linear and unsteady states during the general summer period for the target areas of the Yellow Sea (Incheon Port and Pyeongtaek·Dangjin Ports), archipelago region (Mokpo Port), South and East Sea (Busan and Masan Ports) and East Sea with mountainous area (Donghae·Mukho Ports). The resulting dispersion lengths of vessel emissions into the onshore regions around the target ports shed light on portal air quality management, because vessel emissions from the Incheon, Mokpo, Busan, and Donghae·Mukho ports were transported 27-31km (Western Seoul), 21-24km (Southern Muan), 20-26km (Gimhae and Yangsan), and 22-25km (Taebeak Mountains), respectively. Therefore, the results of this study provide useful data for regional air quality management and marine air pollution mitigation to improve the sustainability of port cities.

본 연구에서는 국내 서로 다른 지리적 특성을 갖는 지역에서 발생되는 해륙풍에 의한 항만 내 선박 대기오염물질의 항구도시 확산 범위를 규명하고자 하였다. 연구 대상 지역은 서해안(인천항 및 평택·당진항), 다도해 지역(목포항), 남해 및 동해(부산항 및 마산항), 동해 산간 지역(동해·묵호항)으로 선정하였다. 해륙풍 발생과 그로 인한 항만 내 선박에서 기인하는 대기오염물질의 확산 모사를 위하여 비선형(Non-linear) 및 비정상(Unsteady) 거동의 국지 순환풍 모사가 가능한 HOTMAC-RAPTAD 프로그램을 활용하였으며, 모사 기간은 전형적인 여름 날씨인 7월 중순으로 하였다. 그 결과, 해륙풍의 발생 특성과 항만에서 발생되는 대기오염물질의 주변 지역 확산 거동이 지역마다 서로 다르게 나타났는데 연구 대상 항만인 인천항, 목포항, 부산항, 동해·묵호항에서 배출되는 대기오염물질은 항구로부터 각각 27~31km(서울 서쪽 일부 지역), 21~24km(무안 남부), 20~26km(김해 및 양산 인근), 22~25km(태백산맥 능선 지역)까지 영향을 끼치는 것으로 분석되었다. 따라서 본 연구에서 도출된 결과는 향후 효과적인 항만 지역 대기질과 선박 대기오염물질 관리에 있어 매우 중요한 기초 수단으로 활용 가능할 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 한국생산기술연구원 기관주요사업 "Add-on 모듈 탑재를 통한 지능형 뿌리공정 기술개발 (KITECH EO-21-0009)"의 지원으로 수행한 연구입니다.

References

  1. Chang, Y. T., Y. Roh, and H. Park(2014), Assessing noxious gases of vessel operations in a potential Emission Control Area. Transportation Research Part D: Transport and Environment, Vol. 28, pp. 91-97. https://doi.org/10.1016/j.trd.2014.03.003
  2. Gurjar, B., A. Jain, A. Sharma, A. Agarwal, P. Gupta, A. Nagpure, and J. Lelieveld(2010), Human health risks in megacities due to air pollution. Atmospheric Environment, Vol. 44, pp. 4606-4613. https://doi.org/10.1016/j.atmosenv.2010.08.011
  3. Haurwitz, B.(1947), Comments on the sea-breeze circulation. Journal of Atmospheric Sciences 4, pp. 1-8.
  4. Hsu, S. A.(1970), Coastal air-circulation system: observations and empirical model. Monthly Weather Review, Vol. 98, pp. 487-509. https://doi.org/10.1175/1520-0493(1970)098<0487:CACSOA>2.3.CO;2
  5. Jeong, J. W., I. H. Lee, and H. K. Lee(2008), Estimation of the effective region of Sea/Land breeze in west coast using numerical modeling. Journal of Korean Society for Atmospheric Environment, Vol. 24, pp. 259-270. https://doi.org/10.5572/KOSAE.2008.24.2.259
  6. Jiang, W., F. Hu, and W. Wang(2000), A non-hydrostatic dispersion modeling system and its application to air pollution assessments over coastal complex terrain. Journal of Wind Engineering and Industrial Aerodynamics 87, pp. 15-43. https://doi.org/10.1016/S0167-6105(00)00013-1
  7. Kampa, M. and E. Castanas(2008), Human health effects of air pollution. Environmental pollution 151, pp. 362-367. https://doi.org/10.1016/j.envpol.2007.06.012
  8. Kim, Y. H. and J. J. Baik(2004), Daily maximum urban heat island intensity in large cities of Korea. Theoretical and Applied Climatology, Vol. 79, pp. 151-164. https://doi.org/10.1007/s00704-004-0070-7
  9. Kim, Y. P. and G. Lee(2018), Trend of air quality in Seoul: Policy and science. Aerosol and Air Quality Research, Vol. 18, pp. 2141-2156. https://doi.org/10.4209/aaqr.2018.03.0081
  10. Kwon, Y., H. Lee, and H. Lee(2018), Implication of the cluster analysis using greenhouse gas emissions of Asian countries to climate change mitigation. Mitigation and Adaptation Strategies for Global Change, Vol. 23, pp. 1225-1249. https://doi.org/10.1007/s11027-018-9782-3
  11. Kwon, Y., H. Lim, Y. Lim, and H. Lee(2019), Implication of activity-based vessel emission to improve regional air inventory in a port area. Atmospheric Environment, Vol. 203, pp. 262-270. https://doi.org/10.1016/j.atmosenv.2019.01.036
  12. Kim, K. H., B. H. Kwon, M. S. Kim, and D. C. Lee(2017), Dispersion of Air Pollutants from Ship Based Sources in Incheon Port. Journal of the Korean Society of Marine Environment & Safety, Vol. 23, No. 5, pp. 488-496. https://doi.org/10.7837/kosomes.2017.23.5.488
  13. Lee, B. K. and S. M. Lee(2019), Current Status of Ship Emissions and Reduction of Emissions According to RSZ in the Busan North Port. Journal of the Korean Society of Marine Environment & Safety, Vol. 25, pp. 572-580. https://doi.org/10.7837/kosomes.2019.25.5.572
  14. Lee, H. W., Y. K. Kim, and G. M. Won(1999), The Development of Air Quality Model Considering Shipping Source in Pusan Region. Journal of Korean Environmental Sciences Society, Vol 8, No. 1, pp. 135-144.
  15. Lee, M. W. and H. S. Lee(2018), A Study on Atmospheric Dispersion Pattern of Ship Emissions - Focusing on Port of Busan. Journal of Korea Port Economic Association, Vol. 34, pp. 35-49. https://doi.org/10.38121/kpea.2018.03.34.1.35
  16. Lee, S. H., B. Y. Kang, B. H. Jeong, and J. Y. Gu(2020), National Management Measures for Reducing Air Pollutant Emissions from Vessels Focusing on KCG Services. Journal of the Korean Society of Marine Environment & Safety, Vol. 26, pp. 163-174. https://doi.org/10.7837/kosomes.2020.26.2.163
  17. Lee, Y., Y. Kwon, and H. Lee(2021), Detection of High-level PM2.5 Occurrences Applying Local Outlier Factor (LOF) Algorithm. Journal of Korean Society for Atmospheric Environment, Vol. 37, pp. 125-143. https://doi.org/10.5572/KOSAE.2021.37.1.125
  18. Liu, K. Y., Z. Wang, and L. F. Hsiao(2002), A modeling of the sea breeze and its impacts on ozone distribution in northern Taiwan. Environmental Modelling & Software, Vol. 17, pp. 21-27. https://doi.org/10.1016/S1364-8152(01)00049-4
  19. Lu, C. H., J. H. Teng, Y. M. Yang, and B. J. Chang(2010), Avertable dose intervention applied in emergency response dose evaluation system for nuclear emergency preparedness in Taiwan. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 618, pp. 323-330.
  20. Moon, S. E., K. M. Jang, and H. W. Lee(1990), Asia-Pacific Journal of Atmospheric Sciences. Asia-Pacific Journal of Atmospheric Sciences, Vol. 26, pp. 67-77.
  21. Park, M. S. and J. H. Chae(2018), Features of sea-land-breeze circulation over the Seoul Metropolitan Area. Geoscience Letters, Vol. 5, pp. 1-12. https://doi.org/10.1186/s40562-018-0101-3
  22. Pokhrel, R. and H. Lee(2011), Estimation of the effective zone of sea/land breeze in a coastal area. Atmospheric Pollution Research, Vol. 2, pp. 106-115. https://doi.org/10.5094/APR.2011.013
  23. Pokhrel, R. and H. Lee(2015), Estimation of air pollution from the OGVs and its dispersion in a coastal area. Ocean Engineering, Vol. 101, pp. 275-284. https://doi.org/10.1016/j.oceaneng.2015.04.023
  24. Pokhrel, R., H. Lee, R. K. Sharma, and B. Sapkota(2021), Aerosol Dispersion Over a High Altitude Region: a Case Study of Kathmandu, Nepal. Water, Air, & Soil Pollution, Vol. 232, pp. 1-15. https://doi.org/10.1007/s11270-020-04943-x
  25. Wong, N. H. and C. Yu(2005), Study of green areas and urban heat island in a tropical city. Habitat international, Vol. 29, pp. 547-558. https://doi.org/10.1016/j.habitatint.2004.04.008
  26. Yamada, T.(2000), Numerical simulations of airflows and tracer transport in the southwestern United States. Journal of Applied Meteorology and Climatology, Vol. 39, pp. 399-411. https://doi.org/10.1175/1520-0450(2000)039<0399:NSOAAT>2.0.CO;2
  27. Yamada, T. and S. Bunker(1988), Development of a nested grid, second moment turbulence closure model and application to the 1982 ASCOT Brush Creek data simulation. Journal of Applied meteorology and Climatology, Vol. 27, pp. 562-578. https://doi.org/10.1175/1520-0450(1988)027<0562:DOANGS>2.0.CO;2
  28. Yeo, M. and Y. Kim(2019), Trends of the PM 2.5 concentrations and high PM 2.5 concentration cases by region in Korea. Particle and aerosol research, Vol. 15, pp. 45-56. https://doi.org/10.11629/JPAAR.2019.15.2.045
  29. Zhou, Y., J. I. Levy, J. S. Evans, and J. K. Hammitt(2006), The influence of geographic location on population exposure to emissions from power plants throughout China. Environment International, Vol. 32(3), pp. 365-373. https://doi.org/10.1016/j.envint.2005.08.028