• Title/Summary/Keyword: land classification

Search Result 924, Processing Time 0.031 seconds

A comparison of neural networks and maximum likelihood classifier for the classification of land-cover (토지피복분류에 있어 신경망과 최대우도분류기의 비교)

  • Jeon, Hyeong-Seob;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.2 s.16
    • /
    • pp.23-33
    • /
    • 2000
  • On this study, Among the classification methods of land cover using satellite imagery, we compared the classification accuracy of Neural Network Classifier and that of Maximum Likelihood Classifier which has the characteristics of parametric and non-parametric classification method. In the assessment of classification accuracy, we analyzed the classification accuracy about testing area as well as training area that many analysts use generally when assess the classification accuracy. As a result, Neural Network Classifier is superior to Maximum Likelihood Classifier as much as 3% in the classification of training data. When ground reference data is used, we could get poor result from both of classification methods, but we could reach conclusion that the classification result of Neural Network Classifier is superior to the classification result of Maximum Likelihood Classifier as much as 10%.

  • PDF

Selecting Optimal Basis Function with Energy Parameter in Image Classification Based on Wavelet Coefficients

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.437-444
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have tried to enhance classification accuracy. Previous studies have shown that the classification technique based on wavelet transform is more effective than traditional techniques based on original pixel values, especially in complicated imagery. Various basis functions such as Haar, daubechies, coiflets and symlets are mainly used in 20 image processing based on wavelet transform. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we first computed the wavelet coefficients of satellite image using ten different basis functions, and then classified images. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis functions. The energy parameters of wavelet detail bands and overall accuracy are clearly correlated. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

A Study on the Effect of Image Resampling in Land Cover Classification (토지피복분류에 있어서 이미지재배열의 영향에 관한 연구)

  • Yang, In-Tae;Kim, Yeon-Jun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.181-192
    • /
    • 1993
  • Image is composed of the digital numbers including information on natural phenomena, their condition and the kind of objects. Digital numbers change in geometric correction(that is preprocessing). This change of digital numbers gave an effect on results of land-cover classification. We intend to know the influence of resampling as classifying land-cover using the image reconstructed by geometric correction in this paper. Chun-cheon basin was selected the study area having most variable land-cover pattern in North-Han river valley and made on use of RESTEC data resampled in preprocessing. Land-cover is classified as six classes of LEVEL I using maximum likelyhood classification method. We classified land-cover using the image resampled by two methods in this study. Bilinear interpolation method was most accurate in five classes except bear-land in the result of comparing each class with topographic map. We should choose the method of resampling according to the class in which we put the importance in the image resampling of geometric correction. And if we use four-season's image, we may classify more accurately in case of the confusion in case of the confusion in borders of rice field and farm.

  • PDF

A Study on Object-Based Image Analysis Methods for Land Cover Classification in Agricultural Areas (농촌지역 토지피복분류를 위한 객체기반 영상분석기법 연구)

  • Kim, Hyun-Ok;Yeom, Jong-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.26-41
    • /
    • 2012
  • It is necessary to manage, forecast and prepare agricultural production based on accurate and up-to-date information in order to cope with the climate change and its impacts such as global warming, floods and droughts. This study examined the applicability as well as challenges of the object-based image analysis method for developing a land cover image classification algorithm, which can support the fast thematic mapping of wide agricultural areas on a regional scale. In order to test the applicability of RapidEye's multi-temporal spectral information for differentiating agricultural land cover types, the integration of other GIS data was minimized. Under this circumstance, the land cover classification accuracy at the study area of Kimje ($1300km^2$) was 80.3%. The geometric resolution of RapidEye, 6.5m showed the possibility to derive the spatial features of agricultural land use generally cultivated on a small scale in Korea. The object-based image analysis method can realize the expert knowledge in various ways during the classification process, so that the application of spectral image information can be optimized. An additional advantage is that the already developed classification algorithm can be stored, edited with variables in detail with regard to analytical purpose, and may be applied to other images as well as other regions. However, the segmentation process, which is fundamental for the object-based image classification, often cannot be explained quantitatively. Therefore, it is necessary to draw the best results based on expert's empirical and scientific knowledge.

A Study on the Land Cover Characteristics in Korea : Application of Hybrid Classifier and Topographic Normalization

  • Jeon, Seong-Woo;Jung, Hui-Cheul;Chung, Sung-Moon;Lee, Sang-Ik
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.271-280
    • /
    • 1999
  • The topographical effect resulted from rugged terrains and inhomogeneous spectral characteristics due to the complexly mixed land cover condition of Korea substantially lower the remotely sensed land cover classification accuracy In this study, a topographic correction method using digital elevation model to alleviate the topographic effects. To deal with inhomogeneous spectral characteristic, a hybrid classifier with inclusion of prior probabilities was introduced. This investigation concluded that the topographical normalization and hybrid classification with prior probabilities are effective on rugged landscape. The overall and average classification accuracies were improved by 0.92% and 1.016% respectively. The most substantial and noticeable accuracy improvement was observed in forest areas.

  • PDF

Land Cover Classification and Accuracy Assessment Using Aerial Videography and Landsat-TM Satellite Image -A Case Study of Taean Seashore National Park- (항공비디오와 Landsat-TM 자료를 이용한 지피의 분류와 평가 - 태안 해안국립공원을 사례로 -)

  • 서동조;박종화;조용현
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.4
    • /
    • pp.131-136
    • /
    • 1999
  • Aerial videography techniques have been used to inventory conditions associated with grassland, forests, and agricultural crop production. Most recently, aerial videography has been used to verity satellite image classifications as part of the natural ecosystem survey. The objectives of this study were: (1) to use aerial video images of the study area, one part of Taean Seashore National Park, for the accuracy assessment, and (2) to determine the suitability of aerial videography as an accuracy assessment, of the land cover classification with Landsat-TM data. Video images were collected twice, summer and winter seasons, and divided into two kinds of images, wide angle and narrow angle images. Accuracy assessment methods include the calculation of the error matrix, the overall accuracy and kappa coefficient of agreement. This study indicates that aerial videography is an effective tool for accuracy assessment of the satellite image classifications of which features are relatively large and continuous. And it would be possible to overcome the limits of the present natural ecosystem survey method.

  • PDF

A Neuro-Fuzzy Model Approach for the Land Cover Classification

  • Han, Jong-Gyu;Chi, Kwang-Hoon;Suh, Jae-Young
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.122-127
    • /
    • 1998
  • This paper presents the neuro-fuzzy classifier derived from the generic model of a 3-layer fuzzy perceptron and developed the classification software based on the neuro-fuzzl model. Also, a comparison of the neuro-fuzzy and maximum-likelihood classifiers is presented in this paper. The Airborne Multispectral Scanner(AMS) imagery of Tae-Duk Science Complex Town were used for this comparison. The neuro-fuzzy classifier was more considerably accurate in the mixed composition area like "bare soil" , "dried grass" and "coniferous tree", however, the "cement road" and "asphalt road" classified more correctly with the maximum-likelihood classifier than the neuro-fuzzy classifier. Thus, the neuro-fuzzy model can be used to classify the mixed composition area like the natural environment of korea peninsula. From this research we conclude that the neuro-fuzzy classifier was superior in suppression of mixed pixel classification errors, and more robust to training site heterogeneity and the use of class labels for land use that are mixtures of land cover signatures.

  • PDF

Rule set of object-oriented classification using Landsat imagery in Donganh, Hanoi, Vietnam

  • Thu, Trinh Thi Hoai;Lan, Pham Thi;Ai, Tong Thi Huyen
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.521-527
    • /
    • 2013
  • Rule set is an important step which impacts significantly on accuracy of object-oriented classification result. Therefore, this paper proposes a rule set to extract land cover from Landsat Thematic Mapper (TM) imagery acquired in Donganh, Hanoi, Vietnam. The rules were generated to distinguish five classes, namely river, pond, residential areas, vegetation and paddy. These classes were classified not only based on spectral characteristics of features, but also indices of water, soil, vegetation, and urban. The study selected five indices, including largest difference index max.diff; length/width; hue, saturation and intensity (HSI); normalized difference vegetation index (NDVI) and ratio vegetation index (RVI) based on membership functions of objects. Overall accuracy of classification result is 0.84% as the rule set is used in classification process.

Land Cover Classification with High Spatial Resolution Using Orthoimage and DSM Based on Fixed-Wing UAV

  • Kim, Gu Hyeok;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • An UAV (Unmanned Aerial Vehicle) is a flight system that is designed to conduct missions without a pilot. Compared to traditional airborne-based photogrammetry, UAV-based photogrammetry is inexpensive and can obtain high-spatial resolution data quickly. In this study, we aimed to classify the land cover using high-spatial resolution images obtained using a UAV. An RGB camera was used to obtain high-spatial resolution orthoimage. For accurate classification, multispectral image about same areas were obtained using a multispectral sensor. A DSM (Digital Surface Model) and a modified NDVI (Normalized Difference Vegetation Index) were generated using images obtained using the RGB camera and multispectral sensor. Pixel-based classification was performed for twelve classes by using the RF (Random Forest) method. The classification accuracy was evaluated based on the error matrix, and it was confirmed that the proposed method effectively classified the area compared to supervised classification using only the RGB image.

The Analysis of Classification Method and Characteristics of Urban Ecotopes on the Landscape Ecological Aspect - The Case of Metropolitan Daegu - (경관생태적 측면에서의 도시 에코톱의 분류방법 및 특성분석 - 대구광역시를 사례지로 -)

  • 나정화;이정민
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1215-1225
    • /
    • 2003
  • The purpose of this research was to investigate the characteristics of urban ecotopes and to classify ecotopes systematically from them. Total of 15 characteristics for classification of ecotopes were selected, and there were categorized 3 factors, that is abiotic, biotic and anthropological factors. The ecotope types in the study area were classified into 67. The classification of ecotope was made with SPSS for Windows Version 10.0 on the basis of the 15 characteristics. As the results of cluster analysis using the average linkage method between groups, groups of ecotope type were divided into 15 clusters. It was known that there was not a great difference in an affinity as the result of overlapping the maps of ecotope type and land use type. This research suggested characteristics for classification of ecotopes, but there was a limit to Set the objective method for grade classification because of lacking in the basic data, the research of characteristics will be accomplished continuously.