• Title/Summary/Keyword: land classification

Search Result 924, Processing Time 0.033 seconds

Land Category Non-coincidence Measurements Using High Resolution Satellite Images and Digital Topographic Maps (고해상도 위성영상과 수치지형도를 이용한 지목 불부합의 정도 측정)

  • 홍성언;이동헌;박수홍
    • Spatial Information Research
    • /
    • v.12 no.1
    • /
    • pp.43-56
    • /
    • 2004
  • Basically a land parcel consists of a land parcel number, land category, land boundary and area, and land value is mostly determined by the land category. Generally people want to change their land use to increase their land value so that they can expect more benefits from the land. However, changing land use causes several problems with land properties, haphazard urban expansions and land category non-coincidences. Unfortunately, no effective solutions exist for land category non-coincidence problems. In this study, we proposed a methodology that can classify the land category based land covers using high resolution satellite images and digital topographic maps. For this, we obtained a parcel based land use/cover classification map. Using both this classification map and a digital cadastral map, we inspected land category non-coincidences. As a result, land category non-coincidence rates could be statistically measured and interpreted and demonstrate a possibility that we could quantitatively interpretate and measure cadastral non-coincidence automatically.

  • PDF

Land Cover Classification by Using Landsat Thematic Mapper Data in Pyeongtaeg City (Landsat TM 화상자료(畵像資料)를 이용한 평택시지역 지표피복분류(地表被覆分類))

  • Rim, Sang-Kyu;Hong, Suk-Young;Jung, Won-Kyo;Kim, Moo-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.5
    • /
    • pp.342-349
    • /
    • 2001
  • This study was carried out to classify and evaluate the land cover map using Landsat TM data in Pyeongtaeg City. DGPS data, aerial photography, topographical map were used for selection the training sets and accuracy assessment. The overall accuracy and Kappa coefficient of the land cover classification map(using supervised classification with 13 classes) with Landsat TM data(16 June. 1997) were respectively, 86.8%, 85.4%, but the user's accuracy of urban/village and vinyl-house was below 60%, and the producer's accuracy of read and vinyl-house below 70%. Maybe it was caused the spectral reflectance characteristics, heterogeneity and small distribution area on the artificial things such as urban/village, vinyl_house and road, etc. And then, the agricultural land cover classification system using remote sensing data in Korea was to classify level I and II. Level I consisted of 5 classes such as agricultural land, forest land, water, barren land, urban and built-up land.

  • PDF

Application of the 3D Discrete Wavelet Transformation Scheme to Remotely Sensed Image Classification

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.355-363
    • /
    • 2007
  • The 3D DWT(The Three Dimensional Discrete Wavelet Transform) scheme is potentially regarded as useful one on analyzing both spatial and spectral information. Nevertheless, few researchers have attempted to process or classified remotely sensed images using the 3D DWT. This study aims to apply the 3D DWT to the land cover classification of optical and SAR(Synthetic Aperture Radar) images. Then, their results are evaluated quantitatively and compared with the results of traditional classification technique. As the experimental results, the 3D DWT shows superior classification results to conventional techniques, especially dealing with the high-resolution imagery and SAR imagery. It is thought that the 3D DWT scheme can be extended to multi-temporal or multi-sensor image classification.

Analysis of Land Cover Characteristics with Object-Based Classification Method - Focusing on the DMZ in Inje-gun, Gangwon-do - (객체기반 분류기법을 이용한 토지피복 특성분석 - 강원도 인제군의 DMZ지역 일원을 대상으로 -)

  • Na, Hyun-Sup;Lee, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.121-135
    • /
    • 2014
  • Object-based classification methods provide a valid alternative to traditional pixel-based methods. This study reports the results of an object-based classification to examine land cover in the demilitarized zones(DMZs) of Inje-gun. We used land cover classes(7 classes for main category and 13 classes for sub-category) selected from the criteria by Korea Ministry of Environment. The average and standard deviation of the spectrum values, and homogeneity of GLCM were chosen to map land cover types in an hierarchical approach using the nearest neighborhood method. We then identified the distributional characteristics of land cover by considering 3 topographic characteristics (altitude, slope gradient, distance from the Southern Limited Line(SLL)) within the DMZs. The results showed that scale 72, shape 0.2, color 0.8, compactness 0.5 and smoothness 0.5 were the optimum weight values while scale, shape and color were most influenced parameters in image segmentation. The forests (92%) were main land cover type in the DMZs; the grassland(5%), the urban area (2%) and the forests (broadleaf forest: 44%, mixed forest: 42%, coniferous forest: 6%) also occupied mostly in land cover classes for sub-category. The results also showed that facilities and roads had higher density within 2 km from the SLL, while paddy, field and bare land were distributed largely outside 6 km from the SLL. In addition, there was apparent distinction in land cover by topographic characteristics. The forest had higher density at above altitude 600m and above slope gradient $30^{\circ}$ while agriculture, bare land and grass land were distributed mainly at below altitude 600m and below slope gradient $30^{\circ}$.

An Empirical Study on the Land Cover Classification Method using IKONOS Image (IKONOS 영상의 토지피복분류 방법에 관한 실증 연구)

  • Sakong, Hosang;Im, Jungho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.107-116
    • /
    • 2003
  • This study investigated how appropriate the classification methods based on conventional spectral characteristics are for high resolution imagery. A supervised classification mixing parametric and non-parametric rules, a method in which fuzzy theory is applied to such classification, and an unsupervised method were performed and compared to each other for accuracy. In addition, comparing the result screen-digitized through interpretation to the classification result using spectral characteristics, this study analyzed the conformity of both methods. Although the supervised classification to which fuzzy theory was applied showed the best performance, the application of conventional classification techniques to high resolution imagery had some limitations due to there being too much information unnecessary to classification, shadows, and a lack of spectral information. Consequently, more advanced techniques including integration with other advanced remote sensing technologies, such as lidar, and application of filtering or template techniques, are required to classify land cover/use or to extract useful information from high resolution imagery.

  • PDF

SEMI-AUTOMATIC EXTRACTION OF AGRICULTURAL LAND USE AND VEGETATION INFORMATION USING HIGH RESOLUTION SATELLITE IMAGES

  • Lee, Mi-Seon;Kim, Seong-Joon;Shin, Hyoung-Sub;Park, Jong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.147-150
    • /
    • 2008
  • This study refers to develop a semi-automatic extraction of agricultural land use and vegetation information using high resolution satellite images. Data of IKONOS satellite image (May 25 of 2001) and QuickBird satellite image (May 1 of 2006) which resembles with the spatial resolution and spectral characteristics of KOMPSAT3. The precise agricultural land use classification was tried using ISODATA unsupervised classification technique and the result was compared with on-screen digitizing land use accompanying with field investigation. For the extraction of vegetation information, three crops of paddy, com and red pepper were selected and the spectral characteristics were collected during each growing period using ground spectroradiometer. The vegetation indices viz. RVI, NDVI, ARVI, and SAVI for the crops were evaluated. The evaluation process is under development using the ERDAS IMAGINE Spatial Modeler Tool.

  • PDF

Crop Field Extraction Method using NDVI and Texture from Landsat TM Images

  • Shibasaki, Ryosuke;Suzaki, Junichi
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.159-162
    • /
    • 1998
  • Land cover and land use classification on a huge scale, e.g. national or continental scale, has become more and more important because environmental researches need land cover: And land use data on such scales. We developed a crop field extraction method, which is one of the steps in our land cover classification system for a huge area. Firstly, a crop field model is defined to characterize "crop field" in terms of NDVI value and textual information Textual information is represented by the density of straight lines which are extracted by wavelet transform. Secondly, candidates of NDVI threshold value are determined by "scale-space filtering" method. The most appropriate threshold value among the candidates is determined by evaluating the line density of the area extracted by the threshold value. Finally, the crop field is extracted by applying level slicing to Landsat TM image with the threshold value determined above. The experiment demonstrates that the extracted area by this method coincides very well with the one extracted by visual interpretation.

  • PDF

High-resolution Land Cover Mapping of Rural Area Using IKONOS Imagery (IKONOS 영상을 이용한 고해상도 토지피복도 작성)

  • Hong, Seong Min;Jung, In Kyun;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1271-1275
    • /
    • 2004
  • The purpose of this study is to present a standardized scheme for providing agriculture-related information at various spatial resolutions of satellite images including Landsat +ETM, KOMPSAT-1 EOC, ASTER VNIR, and IKONOS panchromatic and multi-spectral images. The satellite images were interpreted especially for identifying agricultural areas, crop types, agricultural facilities and structures. The results were compared with the land cover/land use classification system suggested by Ministry of Construction & Transportation based on NGIS (National Geographic Information System) and Ministry of Environment based on satellite remote sensing data. As a result, high-resolution agricultural land cover map from IKONOS imageries was made out. The results by IKONOS image will be provided to KOMPSAT-2 project for agricultural application.

  • PDF

Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers (자료변환 기반 특징과 다중 분류자를 이용한 다중시기 SAR자료의 분류)

  • Yoo, Hee Young;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this study, a novel land-cover classification framework for multi-temporal SAR data is presented that can combine multiple features extracted through data transforms and multiple classifiers. At first, data transforms using principle component analysis (PCA) and 3D wavelet transform are applied to multi-temporal SAR dataset for extracting new features which were different from original dataset. Then, three different classifiers including maximum likelihood classifier (MLC), neural network (NN) and support vector machine (SVM) are applied to three different dataset including data transform based features and original backscattering coefficients, and as a result, the diverse preliminary classification results are generated. These results are combined via a majority voting rule to generate a final classification result. From an experiment with a multi-temporal ENVISAT ASAR dataset, every preliminary classification result showed very different classification accuracy according to the used feature and classifier. The final classification result combining nine preliminary classification results showed the best classification accuracy because each preliminary classification result provided complementary information on land-covers. The improvement of classification accuracy in this study was mainly attributed to the diversity from combining not only different features based on data transforms, but also different classifiers. Therefore, the land-cover classification framework presented in this study would be effectively applied to the classification of multi-temporal SAR data and also be extended to multi-sensor remote sensing data fusion.

Supervised classification for greenhouse detection by using sharpened SWIR bands of Sentinel-2A satellite imagery

  • Lim, Heechang;Park, Honglyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.435-441
    • /
    • 2020
  • Sentinel-2A satellite imagery provides VNIR (Visible Near InfraRed) and SWIR (ShortWave InfraRed) wavelength bands, and it is known to be effective for land cover classification, cloud detection, and environmental monitoring. Greenhouse is one of the middle classification classes for land cover map provided by the Ministry of Environment of the Republic of Korea. Since greenhouse is a class that has a lot of changes due to natural disasters such as storm and flood damage, there is a limit to updating the greenhouse at a rapid cycle in the land cover map. In the present study, we utilized Sentinel-2A satellite images that provide both VNIR and SWIR bands for the detection of greenhouse. To utilize Sentinel-2A satellite images for the detection of greenhouse, we produced high-resolution SWIR bands applying to the fusion technique performed in two stages and carried out the detection of greenhouse using SVM (Support Vector Machine) supervised classification technique. In order to analyze the applicability of SWIR bands to greenhouse detection, comparative evaluation was performed using the detection results applying only VNIR bands. As a results of quantitative and qualitative evaluation, the result of detection by additionally applying SWIR bands was found to be superior to the result of applying only VNIR bands.