• Title/Summary/Keyword: laminated shells

Search Result 145, Processing Time 0.036 seconds

Pareto optimum design of laminated composite truncated circular conical shells

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.397-408
    • /
    • 2013
  • This paper deals with multiobjective optimization of symmetrically laminated composite truncated circular conical shells subjected to external uniform pressure load and thermal load. The design objective is the maximization of the weighted sum of the critical buckling load and fundamental frequency. The design variable is the fibre orientations in the layers. The performance index is formulated as the weighted sum of individual objectives in order to obtain optimal solutions of the design problem. The first-order shear deformation theory (FSDT) is used in the mathematical formulation of laminated truncated conical shells. Finally, the effect of different weighting factors, length-to-radius ratio, semi-cone angle and boundary conditions on the optimal design is investigated and the results are compared.

Reliability Analysis of GFRP Laminated Composite Cylinderical Shells (GFRP 적층복합재료관의 신뢰성해석)

  • 조효남;신재철;이승재;최영민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.85-88
    • /
    • 1992
  • In general, the strength and stiffness of laminated composite cylinderical shells are very sensitive to the variation of slenderness parameters, some coupling-stiffness parameters, lamination angles, stacking sequence and number of layers. In the paper, the effects of these factors on the strength and buckling reliabilities of GFRP laminated cyclinderical shells are investigated based on the proposed strength and buckling limit state models. It may be concluded that the applicable ranges of the slenderness limits of the strength and buckling failure criteria for laminated composite cylinderical shells should be indentified and incorporated into the design formula with appropriate safety factors which provide uniform consistent reliability for balanced design in practice.

  • PDF

Numerical Analysis of Anisotropic Laminated Shallow Shells with Shear Deformation (전단변형을 고려한 이방성 적층 편평 쉘의 수치해석)

  • 권익노;최용희;김재열;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.283-290
    • /
    • 2001
  • Various laminates consisting of thin, unidirectional layers may be achieved by laying up laminae in different reinforcement directions and stacking sequences. Thus, the behavior of nonhomogeneous, anisotropic laminated structures is quite different from that of isotropic ones. The anisotropic laminated shell theory derived here, that includes the effect of transverse shear deformations, can give higher accuracy than thin shell theories. In this paper, by using closed-form solutions for shallow shells having simple supported boundary, extensive numerical study for anisotropic laminated shells were made to investigate the stacking sequence effects for various shells, and to show comparisons to the results between this paper and the existing literature.

  • PDF

Free Vibration of Orthotropic Laminated Composite Conical Shells (직교이방성 적층 복합재료 원추셸의 자유진동)

  • 이영신;강인식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.595-603
    • /
    • 1989
  • Free vibration of orthotropic laminated composite conical shells with constant thickness are considered. Governing frequency equations are derived based on the Flugge theory and Galerkin method is applied for the numerical analysis. Comparisons are made between present results and others for the isotropic conical shells and numerical results are obtained based on these results for the specially orthotropic laminated composite conical shells with simply supported edges. Variations of frequency parameter on the change of material properties, stacking sequences, stacking number, geometrical parameters and orthotropic parameters are considered in the analysis.

Vibration Analysis of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields (자기장 및 열하중을 받는 복합재료 원통셸의 진동해석)

  • Park, Sang-Yun;Kim, Sung-Kyun;Choi, Jong-Woon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.791-799
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT was performed through discretization of equations of motion and boundary condition. Structural model of laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations(Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, and stacking sequence are investigated and pertinent conclusions are derived.

Study on the Dynamic Characteristics of Composite Shells Subjected to an Electromagnetic Field (자기장을 받는 복합재료 원통쉘의 동적특성 연구)

  • Park, Sang-Yun;Kim, Sung-Kyun;Choi, Jong-Woon;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.748-754
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT was performed through discretization of equations of motion and boundary condition. Model of laminated composite shells subjected to a combination of magnetic and thermal fields is developed. These coupled equations of motion are based on the electromagnetic equations (Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Dynamic characteristic of composite shells for change of magnetic fields is investigated.

  • PDF

Vibration Analysis of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields with Different Boundary Conditions (경계조건에 따른 자기장 및 열하중을 받는 복합재료 원통셸의 진동해석)

  • Park, Sang-Yun;Kim, Sung-Kyun;Choi, Jong-Woon;Song, Ohseop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.653-660
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT with two different boundary conditions(C-C, S-S) was performed through discretization of equations of motion and boundary condition. Model of laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations (Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, and stacking sequence for each boundary conditions are investigated and pertinent conclusions are derived.

  • PDF

Vibration Analysis of Angle-Ply Laminated Shells (ANGLE-PLY 적층쉘의 진동특성에 관한 연구)

  • Park, Sung Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.409-415
    • /
    • 2011
  • Optimization Analysis of angle-ply laminated shells, having one pair of opposite edges supported, are investigated on the basis of the first-order shear deformation theory. The equations of motion of the shell are solved by the use of ritz method. A range of results are presented for composite shells to show the effects of lamination angle and number of layers on natural frequency. In addition, an analysis of the strain energy distributions is used as an aid for the better understanding of the vibration characteristics of the shells.

Effects of anisotropy and curvature on free vibration characteristics of laminated composite cylindrical shallow shells

  • Dogan, Ali;Arslan, H. Murat;Yerli, Huseyin R.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.493-510
    • /
    • 2010
  • This paper presents effects of anisotropy and curvature on free vibration characteristics of cross-ply laminated composite cylindrical shallow shells. Shallow shells have been considered for different lamination thickness, radius of curvature and elasticity ratio. First, kinematic relations of strains and deformation have been showed. Then, using Hamilton's principle, governing differential equations have been obtained for a general curved shell. In the next step, stress-strain relation for laminated, cross-ply composite shells has been given. By using some simplifications and assuming Fourier series as a displacement field, differential equations are solved by matrix algebra for shallow shells. The results obtained by this solution have been given tables and graphs. The comparisons made with the literature and finite element program (ANSYS).

Study on bi-stable behaviors of un-stressed thin cylindrical shells based on the extremal principle

  • Wu, Yaopeng;Lu, Erle;Zhang, Shuai
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.377-384
    • /
    • 2018
  • Bi-stable structure can be stable in both its extended and coiled forms. For the un-stressed thin cylindrical shell, the strain energy expressions are deduced by using a theoretical model in terms of only two parameters. Based on the principle of minimum potential energy, the bi-stable behaviors of the cylindrical shells are investigated. The results indicate that the isotropic cylindrical shell does not have the second stable configuration and laminated cylindrical shells with symmetric or antisymmetric layup of fibers have the second stable state under some confined conditions. In the case of antisymmetric laminated cylindrical shell, the analytical expressions of the stability are derived based on the extremal principle, and the shell can achieve a compact coiled configuration without twist deformation in its second stable state. In the case of symmetric laminated cylindrical shell, the explicit solutions for the stability conditions cannot be deduced. Numerical results show that stable configuration of symmetric shell is difficult to achieve and symmetric shell has twist deformation in its second stable form. In addition, the roll-up radii of the antisymmetric laminated cylindrical shells are calculated using the finite element package ABAQUS. The results show that the value of the roll-up radii is larger from FE simulation than from theoretical analysis. By and large, the predicted roll-up radii of the cylindrical shells using ABAQUS agree well with the theoretical results.