• Title/Summary/Keyword: lagrangian analysis

Search Result 547, Processing Time 0.022 seconds

Water Quality Model for the Toxic Pollutant Transport Analysis in the Nakdong River (낙동강 유역에서의 독성오염물 배출에 따른 수질해석 모형의 개발)

  • 한건연;김광섭
    • Water for future
    • /
    • v.28 no.1
    • /
    • pp.57-70
    • /
    • 1995
  • A water quality model RIV-LAGI for the toxic pollutant transport analysis is developed based on varied flow analysis and one-dimensional Lagrangian method. Applying to the prismatic channel, it shows accurate results compared with the analytical solutions. The model is applied to the Nakdong River to analyze the phenol spill accident, which occurred on March, 1991. The computed results have good agreements with the observed data. The travel times in the reach of Gumi to Mulkeum based on the monthly average and minimum flow are computed. The suggested model can be used to study the impact of the chemical spills and clean-up plans in the Nakdong River.

  • PDF

Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.481-505
    • /
    • 2013
  • This paper focuses on thermal post-buckling analysis of functionally graded beams with temperature dependent physical properties by using the total Lagrangian Timoshenko beam element approximation. Material properties of the beam change in the thickness direction according to a power-law function. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces and therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In this study, the differences between temperature dependent and independent physical properties are investigated for functionally graded beams in detail in post-buckling case. With the effects of material gradient property and thermal load, the relationships between deflections, critical buckling temperature and maximum stresses of the beams are illustrated in detail in post-buckling case.

A study on the liquefaction analysis using the large deformation theory (대변형 이론을 이용한 액상화 해석에 관한 연구)

  • Moon, Yong;Lee, Kang-Il;Kim, Tae-Hoon;Im, Eun-Sang;Lee, Yong-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1348-1357
    • /
    • 2006
  • For the rational aseismatic design of a structure constructed on the ground which has weakness for liquefaction or flow, it is necessary to predict ground deformation as well as force acting on the ground. In general, the prediction of liquefaction is based on solid mechanics while the prediction of flow is basis of fluid mechanics. Since liquefaction and flow occur continuously, unified analysis methods have been developed. Among of them is Rue-elasto plastic model that is based on small deformation theory. This methods, however, is not adequate for such a large deformable ground condition. In this paper, a large deformaion theory using the finite deformation theory proposed by Dietal and the updated lagrangian method is presented. In addition, the applicability of the theory is verified by 1-d consolidation analysis and flow tests.

  • PDF

Geometrically Nonlinear Analysis of Higher Order Plate Bending Finite Element (고차 판 유한요소의 기하학적 비선형 해석)

  • Shin, Young Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.1-10
    • /
    • 1988
  • A higher order plate bending finite element using cubic in-plane displacement profiles is proposed for geometrically nonlinear analysis of thin and thick plates. The higher order plate bending element has been derived from the three dimensional plate-like continuum by discretization of the equations of motion by Galerkin weighted residual method, together with enforcing higher order plate assumptions. Total Lagrangian formulation has been used for geometrically nonlinear analysis of plates and consistent linearization by Newton-Raphson method has been performed to solve the nonlinear equations. The element characteristics have been computed by, selective reduced integration technique using Gauss quadrature to avoid shear locking phenomenon in case of extremely thin plates. Several numerical examples were solved with FEAP macro program to demonstrate versatility and accuracy of the present higher order plate bending element.

  • PDF

Finite Element Analysis for Plastic Large Deformation and Anisotropic Damage (소성 대변형 및 이방성 손상의 유한요소해석)

  • I.S. Nho;S.J. Yim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.145-156
    • /
    • 1993
  • An improved analysis model for material nonlinearity induced by elasto-plastic deformation and damage including large strain response was proposed. The elasto-plastic-damage constitutive model based on the continuum damage mechanics approach was adopted to overcome limitations of the conventional plastic theory, which can manage the anisotropic tonsorial damages evolved during time-independent plastic deformation process of materials. Updated Lagrangian finite element formulation for elasto-plastic damage coupling problem including large deformation, large rotation and large strain problems was completed to develop a numerical model which can predict all kinds of structural nonlinearities and damage rationally. Finally, a finite element analysis code for the 2-dimensional plane problem was developed and the applicability and validity of the numerical model was investigated through some numerial examples. Calculations showed reasonable results in both geometrical nonlinear problem due to large deformation and material nonlinearity including the damage effect.

  • PDF

Geometrically Nonlinear Analysis of Stiffened Shell Structures Using the Assumed Strain Shell Element (가정변형도 쉘요소를 이용한 보강된 쉘구조의 기하학적 비선형해석)

  • 최명수;김문영;장승필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.209-220
    • /
    • 2000
  • For non-linear analysis of stiffened shell structures, the total Lagrangian formulation is presented based upon the degenerated shell element. Geometrically correct formulation is developed by updating the direction of normal vectors and taking into account second order rotational terms in the incremental displacement field. Assumed strain concept is adopted in order to overcome shear locking phenomena and to eliminate spurious zero energy mode. The post-buckling behaviors of stiffened shell structures are traced by modeling the stiffener as a shell element and considering general transformation between the main structure and the stiffener at the connection node. Numerical examples to demonstrate the accuracy and the effectiveness of the proposed shell element are presented and compared with references' results.

  • PDF

Analysis of Nonlinear Vibration for Hybrid Composite Plates (혼합적층판에 대한 비선형 진동해석)

  • 이영신;김영완
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2306-2314
    • /
    • 1992
  • Using the Lagrangian equation, nonlinear vibration analysis of laminated hybrid composite plates is carried out. The effects of stacking sequences, aspect ratios, number of modes, number of layers and various elastic properties on nonlinear vibration are investigated. The presence of bending-extension coupling in antisymmetric plates yields a second power term in addition to a cubic nonlinear term in governing differential equation of motion. In the other symmetric case, this second term vanishes. The fundamental frequency of analytic results are compared with that of ABAQUS FEM analysis. For nonlinear vibration of antisymmetric unimaterial plate, the result of reference is presented for comparison with this result.

Geometrically Nonlinear Analysis of Eccentrically Stiffened Plate (편심 보강평판의 기하학적 비선형 해석)

  • Jae-Wook Lee;Kie-Tae Chung;Young-Tae Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.307-317
    • /
    • 1991
  • A displacement-based finite element method is presented for the geometrically nonlinear analysis of eccentrically stiffened plates. The nonlinear degenerated shell and eccentric isobeam(isoparametric beam) elements are formulated on the basis of total Lagrangian and updated Lagrangian descriptions. To describe the stiffener's local plate buckling mode, some additional local degrees of freedom are used in the eccentric isobeam element. The eccentric isobeam element can be affectively employed to model the eccentric stiffener just like the case of the degenerated shell element. A detailed nonlinear analysis including the effects of stiffener's eccentricity is performed to estimate the critical load and the post buckling behaviour of an eccentrically stiffened plate. The critical buckling loads are found higher than analytic plate buckling load but lower than Euler buckling load which are the buckling strength requirements of classification society.

  • PDF

Analysis of Rear Closer of Vertical Launching System by Using Fluid-Structure Interaction Method (유체-고체 연성 해석 기법을 통한 수직발사대 후방 덮개의 거동 해석)

  • Lee, Younghun;Gwak, Min-cheol;Cho, Haeseong;Joo, Hyun Shig;Shin, Sang Joon;Yoh, Jai-ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.664-671
    • /
    • 2017
  • This paper presents a numerical analysis of behaviors of rear closer of vertical launch system under rocket plume based on fluid structure interaction analysis. The rocket plume loading is modeled by fully Eulerian method and elasto-plastic behavior of rear cover is calculated by total Lagrangian method based on a 9-node planar element. The interface motion and boundary conditions are described by a hybrid particle level-set method within the ghost fluid framework. We compare the fluid flow pattern between different rear closer models which are elast-plastic and rigid deformation.

  • PDF

Comparison of uniform and spatially varying ground motion effects on the stochastic response of fluid-structure interaction systems

  • Bilici, Yasemin;Bayraktar, Alemdar;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.407-428
    • /
    • 2009
  • The effects of the uniform and spatially varying ground motions on the stochastic response of fluid-structure interaction system during an earthquake are investigated by using the displacement based fluid finite elements in this paper. For this purpose, variable-number-nodes two-dimensional fluid finite elements based on the Lagrangian approach is programmed in FORTRAN language and incorporated into a general-purpose computer program SVEM, which is used for stochastic dynamic analysis of solid systems under spatially varying earthquake ground motion. The spatially varying earthquake ground motion model includes wave-passage, incoherence and site-response effects. The effect of the wave-passage is considered by using various wave velocities. The incoherence effect is examined by considering the Harichandran-Vanmarcke and Luco-Wong coherency models. Homogeneous medium and firm soil types are selected for considering the site-response effect where the foundation supports are constructed. A concrete gravity dam is selected for numerical example. The S16E component recorded at Pacoima dam during the San Fernando Earthquake in 1971 is used as a ground motion. Three different analysis cases are considered for spatially varying ground motion. Displacements, stresses and hydrodynamic pressures occurring on the upstream face of the dam are calculated for each case and compare with those of uniform ground motion. It is concluded that spatially varying earthquake ground motions have important effects on the stochastic response of fluid-structure interaction systems.