• Title/Summary/Keyword: lactobacillus spp

Search Result 223, Processing Time 0.026 seconds

Antimicrobial Effect of Achyranthes japonica Nakai Extracts against Clostridium difficile (우슬 추출물의 Clostridium difficile에 대한 항균 효과)

  • Jung, Sun-Mi;Choi, Soo-Im;Park, Sang-Min;Heo, Tae-Ryeon
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.564-568
    • /
    • 2007
  • In this study, the ethanolic extracts of 40 species of traditional herbal medicines were examined for their antimicrobial activities against Clostridium difficile. Among the 43 screened traditional herbal medicines, Achyranthes Japonica Nakai (AJN), Siegesbeckia glabrescens Makino, and Phelloedendron amurense Ruprecht showed antimicrobial activities greater than 90% at a concentration of 500 ppm. According to the minimum inhibitory concentration (MIC) test the ethyl acetate soluble fraction of the AJN ethanolic extracts (AJNEA) showed the highest growth inhibitory activity against C. difficile, with a MIC of $625{\mu}g/mL$. In addition, the effect of AJNEA on the growth of lactic acid bacteria was investigated. AJNEA did not inhibit the growth of the tested Bifidobacterium spp. or Lactobacillus spp., with the exception of B. longum, Streptococcus thermophilus, and L. helveticus. These results indicate that AJNEA can be utilized as a potential antimicrobial agent against C. difficile related disease.

Identifications of Predominant Bacterial Isolates from the Fermenting Kimchi Using ITS-PCR and Partial 16S rDNA Sequence Analyses

  • CHIN HWA SUP;BREIDT FRED;FLEMING H. P.;SHIN WON-CHEOL;YOON SUNG-SIK
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.68-76
    • /
    • 2006
  • Despites many attempts to explore the microbial diversity in kimchi fermentation, the predominant flora remains controversial to date. In the present study, major lactic acid bacteria (LAB) were investigated in Chinese cabbage kimchi in the early phase of fermention. For the samples over pH 4.0, viable cell counts of Leuconostoc and Pediococcus were $10^6\;cfu/ml$ and below $10^2\;cfu/ml$, respectively, and 20 isolates out of 172 were subjected to a biochemical identification (API 50 CH kit) as well as molecular-typing methods including ITSPCR with a RsaI digestion and 16s rRNA gene sequence analysis for species confirmation. Seven isolates were nicely assigned to Lb. brevis, 6 to Leuconostoc spp. (2 mesenteroides, 2 citreum, I carnosum, I gasicomitatum), 4 to Weissella (3 kimchii/cibaria, 1 hanii) and 2 to other Lactobacillus spp. (1 farciminis, 1 plantarum). On the other hand, the biochemical identification data revealed 9 strains of Lb. brevis, 6 strains of Leuconostocs,2 strains of Lb. plantarum and 1 strain each of Lb. coprophilus and Lactococcus lactis. However, a single isolates, YSM 16, was not matched to the ITS-PCR database constructed in the present study. Two Lb. brevis strains by API 50 CH kit were reassigned to W kimchii/cibaria, Lb. coprophilus or W hanii, respectively, judging from the results by the above molecular typing approaches. As a whole, the identification data obtained by the biochemical test were different from those of ITS-PCR molecular method by about $63\%$ at genus-level and $42\%$ at species-level. The data by the ITS-PCR method conclusively suggest that predominant LAB species is probably heterolactic Lb. brevis, followed by W kimchii/cibaria, Leuc. mesenteroides, and Leuc. citreum, in contrast to the previous reports [3] that Leuc. mesenteroides is the only a predominant species in the early phase kimchi fermentation.

Antimicrobial effects of the interior warming herbs on vaginal microbe (대하치료(帶下治療)에 사용(使用)되는 온이약(溫裏藥)이 질내(膣內) 미생물(微生物)에 미치는 영향(影響))

  • Lee, Jin-Moo;Lee, Chang-Hoon;Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub;Park, Joon-Hong
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.20 no.2
    • /
    • pp.124-138
    • /
    • 2007
  • Purpose: This study was conducted to investigate the antimicrobial effects of the interior warming herbs on vaginal microbes. Methods: Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus, Candida albicans and Gardnerella vaginalis were used for vaginitis-induced microbes. Lactobacillus gasseri, Streptococcus spp. and Escherichia coli HB101 were used for normal vaginal florae. And herbs for warming the interior (Zingiberis Rhizoma, Alpiniae Officinari Rhizoma, Aconiti Tuber, Anethi Fructus, Evodiae Fructus, Cinnamomi Cortex Spissus, Caryophylli Flos, Aconiti Tube, Zanthoxyli Pericarpium, Piperis Longi Fructus, Piperis Nigri Fructus) were used in this study. Antimicrobial activities were tested by the change of optical densities (OD) and colony test in vitro. Results: In the results of vaginitis-induced microbes, Anethi Fructus was decreased the OD values on MRSA and Gardnerella vaginalis and Aconiti Tuber was decreased on MRSA. There were no viable MRSA and Gardnerella vaginalis colony forming against Evodiae Fructus, Staphylococcus aureus and MRSA colony forming against Piperis Longi Fructus, Staphylococcus aureus colony forming against Piperis Nigri Fructus and MRSA colony forming against Zanthoxyli Pericarpium. In the results of normal vaginal florae, Zingiberis Rhizoma was decreased the OD values on Streptococcus spp. and all normal vaginal florae were showed viable colony forming against all experimental herbs. Conclusion: According to these results, we can suggest that some kinds of interior warming herbs have antimicrobial effects on vaginal microbes. So there might be needed to make furthermore studies to seek the herbs which have selective antimicrobial effect on pathologic vaginal microbes.

  • PDF

Effects of Resveratrol and Essential Oils on Growth Performance, Immunity, Digestibility and Fecal Microbial Shedding in Challenged Piglets

  • Ahmed, S.T.;Hossain, M.E.;Kim, G.M.;Hwang, J.A.;Ji, H.;Yang, C.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.5
    • /
    • pp.683-690
    • /
    • 2013
  • A study was conducted to evaluate the effects of resveratrol and essential oils from medicinal plants on the growth performance, immunity, digestibility, and fecal microbial shedding of weaned piglets. A total of 48 weaned piglets (8 kg initial weight, 28-d-old) were randomly allotted to four dietary treatments with 3 replications of 4 piglets each. The dietary treatments were NC (negative control; basal diet), PC (positive control; basal diet+0.002% apramycin), T1 (basal diet+0.2% resveratrol), and T2 (basal diet+0.0125% essential oil blend). All piglets were orally challenged with 5 ml culture fluid containing $2.3{\times}10^8$ cfu/ml of Escherichia coli KCTC 2571 and $5.9{\times}10^8$ cfu/ml Salmonella enterica serover Typhimurium. The PC group (p<0.05) showed the highest average daily gain (ADG) and average daily feed intake (ADFI) throughout the experimental period, although feed conversion ratio (FCR) was improved in the T1 group (p>0.05). Serum IgG level was increased in the T1 group, whereas TNF-${\alpha}$ levels was reduced in the supplemented groups compared to control (p<0.05). The PC diet improved the dry matter (DM) digestibility, whereas PC and T2 diets improved nitrogen (N) digestibility compared to NC and T1 diets (p<0.05). Fecal Salmonella and E. coli counts were reduced in all treatment groups compared to control (p<0.05). Fecal Lactobacillus spp. count was increased in the T2 group compared to others (p<0.05). Dietary treatments had no significant effect on fecal Bacillus spp. count throughout the entire experimental period. Based on these results, resveratrol showed strong potential as antibiotic alternatives for reversing the adverse effects of weaning stress on growth performance, immunity and microbial environment in E. coli and Salmonella-challenged piglets.

Methylome Analysis of Two Xanthomonas spp. Using Single-Molecule Real-Time Sequencing

  • Seong, Hoon Je;Park, Hye-Jee;Hong, Eunji;Lee, Sung Chul;Sul, Woo Jun;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.500-507
    • /
    • 2016
  • Single-molecule real-time (SMRT) sequencing allows identification of methylated DNA bases and methylation patterns/motifs at the genome level. Using SMRT sequencing, diverse bacterial methylomes including those of Helicobacter pylori, Lactobacillus spp., and Escherichia coli have been determined, and previously unreported DNA methylation motifs have been identified. However, the methylomes of Xanthomonas species, which belong to the most important plant pathogenic bacterial genus, have not been documented. Here, we report the methylomes of Xanthomonas axonopodis pv. glycines (Xag) strain 8ra and X. campestris pv. vesicatoria (Xcv) strain 85-10. We identified $N^6$-methyladenine (6mA) and $N^4$-methylcytosine (4mC) modification in both genomes. In addition, we assigned putative DNA methylation motifs including previously unreported methylation motifs via REBASE and MotifMaker, and compared methylation patterns in both species. Although Xag and Xcv belong to the same genus, their methylation patterns were dramatically different. The number of 4mC DNA bases in Xag (66,682) was significantly higher (29 fold) than in Xcv (2,321). In contrast, the number of 6mA DNA bases (4,147) in Xag was comparable to the number in Xcv (5,491). Strikingly, there were no common or shared motifs in the 10 most frequently methylated motifs of both strains, indicating they possess unique species- or strain-specific methylation motifs. Among the 20 most frequent motifs from both strains, for 9 motifs at least 1% of the methylated bases were located in putative promoter regions. Methylome analysis by SMRT sequencing technology is the first step toward understanding the biology and functions of DNA methylation in this genus.

Comparative quality analysis of kimchi products manufactured in Korea, Japan, and China (한국, 일본, 중국 김치의 품질 비교 분석)

  • Lee, Hyejin;Jeong, Suyeon;Kim, Jaehwan;Yoo, SeungRan
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.967-976
    • /
    • 2016
  • The objective of the present study was to investigate differences in quality of kimchi products produced in Korea, Japan, and China. Kimchi products from kimchi-producing countries with high consumer consumption such as Japan and China along with local products from Korea, where exporting has not yet started, were collected. Product pH, acidity, salinity, package pressure, gas production were assessed, and microbiological analyses and sensory evaluations were performed on kimchi products that were stored at either $4^{\circ}C$ for 63 d or $15^{\circ}C$ for 20 d. The pH and acidity results showed that as Japanese and Chinese kimchi had higher pH and lower acidity than that of Korean kimchi, which was determined to be indicative of insufficient microbial fermentation following kimchi production. Japanese kimchi had different microbial properties than those of Korean kimchi, which is due to differences in their manufacturing processes. Overall preferences derived from sensory evaluations were: Korean kimchi>Chinese kimchi>Japanese kimchi. The results of this study demonstrate the sensory superiority of Korean kimchi and may be useful when predicting consumers' acceptance level of Korean kimchi exported to other countries.

Microbiological Composition and Sensory Characterization Analysis of Fermented Sausage Using Strains Isolated from Korean Fermented Foods

  • Jeong, Chang-Hwan;Lee, Sol-Hee;Kim, Hack-Youn
    • Food Science of Animal Resources
    • /
    • v.42 no.6
    • /
    • pp.928-941
    • /
    • 2022
  • This study aimed to analyze the microbiological composition and sensory characterization of fermented sausage using strains isolated from Kimchi (GK1, Pediococcus pentosaceus SMFM2016-GK1; NK3, P. pentosaceus SMFM2016-NK3), Doenjang (D1, Debaryomyces hansenii SMFM2021-D1), and spontaneously fermented sausage (S8, D. hansenii SMFM2021-S8; S6, Penicillium nalgiovense SMFM2021-S6). The control was commercial starter culture. Nine treatments were applied [GD (GK1+D1), GS (GK1+S8), GDS (GK1+D1+S8), ND (NK3+D1), NS (NK3+S8), NDS (NK3+D1+S8), GND (GK1+NK3+D1), GNS (GK1+NK3+S8), and GNDS (GK1+NK3+D1+S8)] by mixing lactic acid bacteria and yeast, and S6 was sprayed. The microbial composition of fermented sausage was analyzed [aerobic bacteria (AC), Lactobacillus spp. (LABC), Staphylococcus spp. (STPC), and yeast and mold (YMC)], and pH and electronic nose and tongue measurements were taken. The AC, LABC, STPC, and YMC values of the control and treatment groups tended to increase during fermentation (p>0.05). The STPC values of the GD, GS, ND, and GDS groups were similar to that of the control on day 3. The pH of the control on day 3 was significantly lower than that of the GD, ND, and GND groups (p<0.05). Higher levels of 4-methylpentanol, 2-furanmethanol, and propyl nonanoate, which provide a "fermented" flavor, were detected in the GD group compared to in the control and other treatment groups. GD and ND groups showed higher umami values than the control and other treatment groups. Therefore, it is expected that GD can be valuable as a starter culture unique to Korea when manufacturing fermented sausage.

Effect of Byproducts Supplementation by Partically Replacing Soybean Meal to a Total Mixed Ration on Rumen Fermentation Characteristics In Vitro (대두박 대체 부산물 위주의 TMR 사료가 반추위 내 미생물의 In Vitro 발효특성에 미치는 영향)

  • Bae, Gui Seck;Kim, Eun Joong;Song, Tae Ho;Song, Tae Hwa;Park, Tae Il;Choi, Nag Jin;Kwon, Chan Ho;Chang, Moon Baek
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.2
    • /
    • pp.129-140
    • /
    • 2014
  • This study was performed to evaluate the effects of replacing basic total mixed ration (TMR) with fermented soybean curd, Artemisia princeps Pampanini cv. Sajabal, and spent coffee grounds by-product on rumen microbial fermentation in vitro. Soybean in the basic TMR diet (control) was replaced by the following 9 treatments (3 replicates): maximum amounts of soybean curd (SC); fermented SC (FSC); 3, 5, and 10% FSC + fermented A. princeps Pampanini cv. Sajabal (1:1, DM basis, FSCS); and 3, 5, 10% FSC + fermented coffee meal (1:1, DM basis, FSCC) of soybean. FSC, FSCS, and FSCC were fermented using Lactobacillus acidophilus ATCC 496, Lactobacillus fermentum ATCC 1493, Lactobacillus plantarum KCTC 1048, and Lactobacillus casei IFO 3533. Replacing dairy cow TMR with FSC treatment led to a pH value of 6 after 8 h of incubation-the lowest value measured (p<0.05), and FSCS and FSCC treatments were higher than SC and FSC treatment after 6 h (p<0.05). Gas production was higher in response to 3% FSC and FSCC treatments than the control after 4-10 h. Dry matter digestibility was increased 0-12 h after FSC treatment (p<0.05) and was the highest after 24 h of 10% FSCS treatment. $NH_3-N$ concentration was the lowest after 24 h of FSC treatment (p<0.05). Microbial protein content increased in response to treatments that had been fermented by the Lactobacillus spp. compared to control and SC treatments (p<0.05). The total concentration of volatile fatty acids (VFAs) was increased after 6-12 h of FSC treatment (p<0.05), while the highest acetate proportion was observed 24 h after 5% and 10% FSCS treatments. The FSC of propionate proportion was increased for 0-10 h compared with among treatments (p<0.05). The highest acetate in the propionate ration was observed after 12 h of SC treatment and the lowest with FSCS 3% treatment after 24 h. Methane ($CH_4$) emulsion was lower with A. princeps Pampanini cv. Sajabal and spent coffee grounds treatments than with the control, SC, and FSC treatments. These experiments were designed to replace the by-products of dairy cow TMR with SC, FSC, FSCS, and FSCC to improve TMR quality. Condensed tannins contained in FSCS and FSCC treatments, which reduced $CH_4$ emulsion in vitro, decreased rumen microbial fermentation during the early incubation time. Therefore, future experiments are required to develop a rumen continuous culture system and an in vivo test to optimize the percentages of FSC, FSCS, and FSCC in the TMR diet of the dairy cows.

Characteristics of Histamine Forming Bacteria from Tuna Fish Waste in Korea (국내 참치 부산물 내 히스타민 생성 주요 세균의 특성 구명)

  • Bang, Min-Woo;Chung, Chang-Dae;Kim, Seon-Ho;Chang, Moon-Baek;Lee, Sung-Sil;Lee, Sang-Suk
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.277-283
    • /
    • 2009
  • Biogenic amines are generally formed through the decarboxylation of specific free amino acids by exogenous decarboxylases released by microbial species associated with the fish products and fermented feeds. This study was conducted to investigate the properties of e tuna waste regarding the control of degradation of biogenic amines (histamine, tyramine, tryptamine, putrescine, and cadaverine) that might be related with the anti-nutritional factor of the tuna waste that is used for manufacturing domestic fish meal. The values of pH and the salt content were 6.51, 3.35% in tuna waste and 5.58 and 5.83% in tuna fish meal, respectively. The strains and dominant bacteria tested in the tuna waste sample were 9.20, 9.29, 5.67, 7.82 and 7.58 log CFU/g of total bacteria, aerobic plate count (APC), total coliform (TC), Lactobacillus spp. and Bacillus spp., respectively. The main histamine forming-bacteria (HFB) in tuna waste were detected by silica gel thin-layer chromatography (TLC) and 7 histamine-forming bacterial species were isolated among microbes grown in selective medium. The histamine concentration was determined by detection of fluorescence of ο-phthaldialdehyde (OPA) derivatives using HPLC and the date were used to reconfirm the identities of the amine-producing bacteria. The 15 histamine- forming bacteria strains grown in trypicase soy broth (TSB) supplemented with 1% L-histidine (TSBH) were identified as Lactococcus(L.) lactis subsp. lactis, Klebsiella pneummonlae, L. garvieae 36, Vibrio olivaceus, Hafnia alvei and L. garvieae which were main dominant amine - producing strains, and Morganella morganii identified by 16S ribosomal RNA (rRNA) sequencing with PCR amplification. A Phylogenetic tree generated from the 16S rRNA sequencing data showed different phyletic lines that could be readily classified as biogenic amine forming gram-positive and negative bacteria.

Physicochemical Characteristics of Seafood-Added Kimchi during Fermentation and Its Sensory Properties (수산물 첨가 김치의 이화학적 특성 변화 및 관능성)

  • Woo, Minji;Choi, Jung Ran;Kim, Mijeong;Jang, Mi-Soon;Cho, Eun Ju;Song, Yeong Ok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1771-1777
    • /
    • 2012
  • This study was conducted to investigate the physicochemical characteristics of seafood added kimchi (SAK) during fermentation and its sensory properties. Korean cabbage kimchi (KCK) and four different SAKs were prepared and stored at $5^{\circ}C$ for eight weeks. The SAKs contained pre-treated octopus, squid, abalone, and webfoot octopus added at 12% (w/w) to the brined Korean cabbage. The fermentation patterns of SAKs were similar to those of KCK, indicating that the SAKs followed a typical fermentation process. Comparison of the physicochemical characteristics of SAKs with KCK revealed that the pH and acidity of SAKs was higher. The maximum concentrations of Lactobacillus spp. and Leuconostoc spp. for SAKs ranged from 8.31~8.85 and 7.60~8.14 log CFU/mL, respectively, which were higher than those for KCK. Therefore, the production of organic acids by microorganisms was greater in SAKs, which explained the higher acidities of the SAKs. Nitrogenous compounds hydrolyzed during fermentation, as well as reducing sugars and other nutritious compounds in SAKs might provide a good medium for lactic acid bacterial growth. Sensory evaluation was carried out using optimally ripened kimchi (pH $4.3{\pm}0.1$, acidity $0.7{\pm}0.1$), and the scores for sour taste, sour smell, and carbonated taste were significantly lower for SAKs than KCK. In the preference test, texture and overall acceptability were significantly higher for SAKs than KCK. Significant differences were not observed among SAKs upon subjective and preference evaluations. In conclusion, the fermentation patterns of SAKs were normal, regardless of seafood sources, and their sensory characteristics were comparable to or superior than those of KCK due to free amino acids, nitrogenous compounds produced during the fermentation, and reducing sugar present in the seafood.