DOI QR코드

DOI QR Code

Effect of Byproducts Supplementation by Partically Replacing Soybean Meal to a Total Mixed Ration on Rumen Fermentation Characteristics In Vitro

대두박 대체 부산물 위주의 TMR 사료가 반추위 내 미생물의 In Vitro 발효특성에 미치는 영향

  • Bae, Gui Seck (Department of Animal Science and Technology, Chung-Ang University) ;
  • Kim, Eun Joong (Department of Animal Science, Kyungpook National University) ;
  • Song, Tae Ho (Department of Animal Science and Technology, Chung-Ang University) ;
  • Song, Tae Hwa (National Institute of Crop Science, Rural Development Administration) ;
  • Park, Tae Il (National Institute of Crop Science, Rural Development Administration) ;
  • Choi, Nag Jin (Department of Animal Science, Chonbuk National University) ;
  • Kwon, Chan Ho (Department of Horse and Exotic Animal Science, Kyungpook National University) ;
  • Chang, Moon Baek (Department of Animal Science and Technology, Chung-Ang University)
  • Received : 2014.04.22
  • Accepted : 2014.05.26
  • Published : 2014.06.30

Abstract

This study was performed to evaluate the effects of replacing basic total mixed ration (TMR) with fermented soybean curd, Artemisia princeps Pampanini cv. Sajabal, and spent coffee grounds by-product on rumen microbial fermentation in vitro. Soybean in the basic TMR diet (control) was replaced by the following 9 treatments (3 replicates): maximum amounts of soybean curd (SC); fermented SC (FSC); 3, 5, and 10% FSC + fermented A. princeps Pampanini cv. Sajabal (1:1, DM basis, FSCS); and 3, 5, 10% FSC + fermented coffee meal (1:1, DM basis, FSCC) of soybean. FSC, FSCS, and FSCC were fermented using Lactobacillus acidophilus ATCC 496, Lactobacillus fermentum ATCC 1493, Lactobacillus plantarum KCTC 1048, and Lactobacillus casei IFO 3533. Replacing dairy cow TMR with FSC treatment led to a pH value of 6 after 8 h of incubation-the lowest value measured (p<0.05), and FSCS and FSCC treatments were higher than SC and FSC treatment after 6 h (p<0.05). Gas production was higher in response to 3% FSC and FSCC treatments than the control after 4-10 h. Dry matter digestibility was increased 0-12 h after FSC treatment (p<0.05) and was the highest after 24 h of 10% FSCS treatment. $NH_3-N$ concentration was the lowest after 24 h of FSC treatment (p<0.05). Microbial protein content increased in response to treatments that had been fermented by the Lactobacillus spp. compared to control and SC treatments (p<0.05). The total concentration of volatile fatty acids (VFAs) was increased after 6-12 h of FSC treatment (p<0.05), while the highest acetate proportion was observed 24 h after 5% and 10% FSCS treatments. The FSC of propionate proportion was increased for 0-10 h compared with among treatments (p<0.05). The highest acetate in the propionate ration was observed after 12 h of SC treatment and the lowest with FSCS 3% treatment after 24 h. Methane ($CH_4$) emulsion was lower with A. princeps Pampanini cv. Sajabal and spent coffee grounds treatments than with the control, SC, and FSC treatments. These experiments were designed to replace the by-products of dairy cow TMR with SC, FSC, FSCS, and FSCC to improve TMR quality. Condensed tannins contained in FSCS and FSCC treatments, which reduced $CH_4$ emulsion in vitro, decreased rumen microbial fermentation during the early incubation time. Therefore, future experiments are required to develop a rumen continuous culture system and an in vivo test to optimize the percentages of FSC, FSCS, and FSCC in the TMR diet of the dairy cows.

본 연구는 농 식품부산물 중 비지박, 사자발약쑥 그리고 커피박의 유효미생물 (L. acidophilus ATCC 496, L. fermentum ATCC 1493, L. plantarum KCTC 1048, L. casei IFO 3533) 발효 사료원이 젖소 급여용 TMR (대조구) 중 대두박을 주로 대체한 각 비지박 (SC), 발효 비지박 (FSC), 발효 비지박+발효 사자발약쑥 부산물 (1:1, DM basis, FSCS) 3, 5, 10% 그리고 발효 비지박 + 발효 커피박 (1:1, DM basis, FSCC) 3, 5, 10%의 반추위 내 미생물 발효특성을 알아보기 위해 9처리구를 이용하여 3반복으로 in vitro 시험이 실시되었다. 배양 6~8시간대에 FSCS와 FSCC 처리구는 SC와 FSC 처리구에 비해 높은 pH 수준을 유지하였고, 대조구에 비해 낮은 pH 수준을 유지하였다 (p<0.05). 또한 배양 24시간대 FSC와 FSCC 3% 처리구는 가장 높은 pH를 유지하였다 (p<0.05). Gas 생성량은 배양 4~10시간대까지 FSCS와 FSCC 처리구가 대조구 보다 유의적으로 높았으나 SC와 FSC 처리구 보다 낮은 결과를 나타내었다 (p<0.05). 건물소화율은 배양 12시간대까지 FSC 처리구에서 유의적으로 높았고 (p<0.05), 24시간대에는 FSCS 10% 처리구가 가장 높은 결과를 나타내었다 (p<0.05). $NH_3-N$ 함량은 배양 4시간대까지 대조구에서 가장 낮았고 (p<0.05), 24시간에서는 FSC 처리구가 가장 높은 결과를 나타내었다 (p<0.05). 미생물단백질 합성량은 배양 시작 시 FSC, FSCS 그리고 FSCC 처리구가 4종의 Lactobacillus spp.에 의한 발효 때문에 대조구와 SC 처리구에 비해 높았으며 (p<0.05), 배양 10시간대 FSC 처리구 보다 SC, FSCS 그리고 FSCC 처리구에서 유의하게 높은 결과를 나타내었다 (p<0.05). Total VFA 농도는 배양 6~12 시간대에는 FSC 처리구에 유의하게 높았고(p<0.05), 배양 24시간대에는 FSCS 처리구에서 가장 높았다 (p<0.05). Acetate 농도는 배양 0~12 시간대에 FSC 처리구에서 가장 높았으며 (p<0.05), 24시간대에는 FSCS 5, 10% 처리구에서 가장 높은 결과를 나타내었다 (p<0.05). Propionate 농도는 FSC 처리구가 배양 0~10시간대까지 가장 높았으며 (p<0.05), 전체 배양기간 동안 FSCS 5, 10% 처리구와 FSCC 처리구에 비해 높은 경향을 나타내었다. Acetate/Propionate 비율은 배양 12시간대에 SC 처리구에서 가장 높았으며, 배양 24시간대에는 FSCS 3% 처리구가 가장 낮은 결과를 나타내었다 (p<0.05). $CH_4$ 가스 생성량은 FSC 처리구에서 배양 0~10시간대까지 가장 높았으며 (p<0.05), 24시간대에는 가장 낮은 결과를 나타내었다 (p<0.05). 배양 4~10시간대까지 FSCS와 FSCC 처리구는 SC와 FSC 처리구에 비해 유의하게 낮은 $CH_4$ 가스 생성량을 나타내었고 (p<0.05), 사자발약쑥과 커피박 함량이 증가할수록 $CH_4$ 가스 생성량은 배양 종료 시까지 낮은 경향을 나타내었다. 따라서, 본 in vitro 시험에서 젖소 급여용 TMR에 SC, FSC, FSCS 그리고 FSCC의 대체효과는 FSC 처리구에서 배양 초기부터 12시간대까지 반추위 내 미생물 발효 특성이 가장 높았다. FSCS와 FSCC 처리구는 배양 6~8시간대 부터 반추위 내 미생물 작용이 높아지는 특징을 나타내었으나, 배양 시작 후 6~8시간대까지 gas 생성량 및 $CH_4$ 가스 발생량은 낮아지는 특징을 나타내었다. 이와 같은 결론은 FSC는 젖소용 TMR 사료원 대체 효과가 높으며, TMR 사료원 중 FSCS와 FSCC 대체효과는 배양 초기 다소 낮은 반추위 내 미생물 발효 특성을 나타내었으나 $CH_4$ 저감효과를 나타내었다. 또한 배양 후기에는 SC와 FSC의 반추위 내 미생물 발효 특성과 비슷한 경향을 나타내어 TMR 사료원으로써 이용 가치가 높을 것으로 사료된다.

Keywords

References

  1. AOAC. 1984. Official methods analysis (12th ed.), Association of Official Analytical Chemists, Arlington, VA. Washinton D. C., USA.
  2. Barahona, R., Solange, S., Carlos, E.L., Emyr, O., Phillip, M. and Theodorou, M.K. 2006. Effect of condensed tannins from tropical legumes on the activity of fibrolytic enzymes from the rumen fungus neocallimastyx hurleyensis. Enzyme and Microbial Technology. 39:281-288. https://doi.org/10.1016/j.enzmictec.2005.10.011
  3. Barry, T.N., Manley, T.R. and Duncan, S.J. 1986. The role of condensed tannins in the nutritional value of lotus pedunculatus for sheep. 4. Sites of carbohydrate and protein digestion as influenced by dietary reactive tannin concentration. British Journal of Nutrition. 55:123-137. https://doi.org/10.1079/BJN19860016
  4. Bartley, E.E., Ibbetson, R.W., Chyba, L.J. and Dayton, A.D. 1978. Coffee grounds. Ii. Effects of coffee grounds on performance of milking dairy cows and feedlot cattle, and on rumen fermentation and dry matter removal rate. Journal of Anim Science. 47:791-799. https://doi.org/10.2527/jas1978.474791x
  5. Belitz, H.D., Grosch, W. and Schieberle, P. 2009. Coffee, tea, cocoa. In H. D. Belitz, W. Grosch & P. Schieberle (eds.), Food Research International. 29:185-189.
  6. Campbell, T.W., Bartley, E.E., Bechtle, R.M. and Dayton, A.D. 1976. Coffee grounds. I. Effects of coffee grounds on ration digestibility and diuresis in cattle, on in vitro rumen fermentation, and on rat growth. Journal of Dairy Science. 59: 452-1460.
  7. Chaney, A.L. and Marbach, E.P. 1962. Modified reagents for determination of urea and ammonia. Clinical Chemistry. 8: 30-132.
  8. Delgado-Andrade, C., Rufian-Henares, J.A. and Morales, F.J. 2005. Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. Journal of Agricultural and Food Chemistry 53:7832-7836. https://doi.org/10.1021/jf0512353
  9. Erwin, E.S., Sterner, W., Gordon, R.S., Machlin, L.J. and Tureen, L.L. 1961. Etiology of muscular dystrophy in the lamb and chick. Journal Nutrition. 75:45-50.
  10. Han, S.H., Han, K.S., Seung, J.H., Kwon, N.K. and Shin, I.A. 2012. Operation of world grain market information system No. R661-1. Korea Rural Economic Institute.
  11. Hess, H.D., Tiemann, T.T., Noto, F., Carulla, J.E. and Kreuzer, M. 2006. Strategic use of tannins as means to limit methane emission from ruminant livestock. International Congress Series. 1293:164-167. https://doi.org/10.1016/j.ics.2006.01.010
  12. Hong, J.H., Jeon, J.L., Lee, J.H. and Lee, I.S. 2007. Antioxidative properties of artemisia princeps pamp. Journal of Korean Society Food Science and Nutrition. 36:657-662. https://doi.org/10.3746/jkfn.2007.36.6.657
  13. Ishida, K., Yani, S., Kitagawa, M., Oishi, K., Hirooka, H. and Kumagai, H. 2012. Effects of adding food by-products mainly including noodle waste to total mixed ration silage on fermentation quality, feed intake, digestibility, nitrogen utilization and ruminal fermentation in wethers. Animal Science Journal. 83:735-742. https://doi.org/10.1111/j.1740-0929.2012.01016.x
  14. Kim, C.H., Kim, G.B., Chang, M.B., Bae, G.S., Paik, I.K. and Kil, D.Y. 2012. Effect of dietary supplementation of lactobacillusermented artemisia princeps on growth performance, meat lipid peroxidation, and intestinal microflora in hy-line brown male chickens. Poultry Science. 91:2845-2851. https://doi.org/10.3382/ps.2012-02467
  15. Kim, Y.I., Jung, S.H., Yang, S.Y., Huh, J.W. and Kwak, W.S. 2007. Effects of cellulolytic microbes inoculation during deep stacking of spent mushroom substrates on cellulolytic enzyme activity and nutrients utilization by sheep. Journal Animal Science and Technology. 49:667-676. https://doi.org/10.5187/JAST.2007.49.5.667
  16. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry. 193:265-275.
  17. McDougall, E.I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochemical Journal. 43:99-109.
  18. Meehl, G.A., Karl, T., Easterling, D.R., Changnon, S., Pielke, R., Changnon, D., Evans, J., Groisman, P.Y., Knutson, T.R., Kunkel, K.E., Mearns, L.O., Parmesan, C., Pulwarty, R., Root, T., Sylves, R.T., Whetton, P. and Zwiers, F. 2000. An introduction to trends in extreme weather and climate events: Observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bulletin of the American Meteorological Society. 81:413-416. https://doi.org/10.1175/1520-0477(2000)081<0413:AITTIE>2.3.CO;2
  19. Miller, T.L. and Wolin, M.J. 1974. A serum bottle modification of the hungate technique for cultivating obligate anaerobes. Applied Microbiology. 27:985-987.
  20. Min, B.R., Barry, T.N., Attwood, G.T. and McNabb, W.C. 2003. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Animal Feed Science and Technology. 106:3-19. https://doi.org/10.1016/S0377-8401(03)00041-5
  21. Mussatto, S., Machado, E.S., Martins, S. and Teixeira, J. 2011. Production, composition, and application of coffee and its industrial residues. Food and Bioprocess Technology. 4:661-672. https://doi.org/10.1007/s11947-011-0565-z
  22. National Institute of Animal Science R. 2012. Korean feeding standard for dairy cattle, National Institute of Animal Science, RDA.
  23. Negesse, T., Makkar, H.P.S. and Becker, K. 2009. Nutritive value of some non-conventional feed resources of ethiopia determined by chemical analyses and an in vitro gas method. Animal Feed Science and Technology. 154:204-217. https://doi.org/10.1016/j.anifeedsci.2009.09.010
  24. Park, J.K., Lim, D.H., Kim, S.B., Ki, K.S., Lee, H.J., Kwon, E.G., Cho, W.M. and Kim, C.H. 2011. Effects of partial replacement of corn grain and soybean meal with agricultural by-product feeds on in vitro rumen fermentation characteristics and optimum levels of mixing ratio. Journal of Animal Science and Technology. 53:441-450. https://doi.org/10.5187/JAST.2011.53.5.441
  25. Puchala, R., Min, B.R., Goetsch, A.L. and Sahlu, T. 2005. The effect of a condensed tannin-containing forage on methane emission by goats. Journal of Animal Science. 83:182-186. https://doi.org/10.2527/2005.831182x
  26. SAS. 1999. Sas procedures guide, version 8, SAS Institute Inc., Cary, NC, USA.
  27. Senevirathne, N.D., Okamoto, T., Takahashi, J., Umetsu, K. and Nishida, T. 2012. Effect of mixed microbial culture treatment on the nutritive value of coffee, green tea and oolong tea residues and the effect of the fermented residues on in vitro rumen fermentation. APCBEE Procedia. 4:66-72. https://doi.org/10.1016/j.apcbee.2012.11.012
  28. Shin, D.H. and Lee, Y.W. 2002. Quality attributes of bread with soybean milk residue-wheat flour. Korean Journal of Food and Nutrition. 15:314-320.
  29. Sievert, S.J. and Shaver, R.D. 1993. Carbohydrate and aspergillus oryzae effects on intake, digestion, and milk production by dairy cows. Journal of Dairy Science. 76: 245-254. https://doi.org/10.3168/jds.S0022-0302(93)77343-9
  30. Tan R.X., Zheng, W.F. and Tang, H.Q. 1998. Biologically active substances from the genus artemisia. Planta Medical. 64:295-302. https://doi.org/10.1055/s-2006-957438
  31. Tang, K. and Xiong, W. 2012. Index investment and the financialization of commodities. Financial Analysts Journal. 68:54-74. https://doi.org/10.2469/faj.v68.n6.5
  32. Tavendale, M.H., Meagher, L.P., Pacheco, D., Walker, N., Attwood, G.T. and Sivakumaran, S. 2005. Methane production from in vitro rumen incubations with lotus pedunculatus and medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Animal Feed Science and Technology. 123-124, Part 1:403-419. https://doi.org/10.1016/j.anifeedsci.2005.04.037
  33. Theodorou, M.K., Davies, D.R., Nielsen, B.B., Lawrence, M.I.G. and Trinci, A.P.J. 1995. Determination of growth of anaerobic fungi on soluble and cellulosic substrates using a pressure transducer. Microbiology. 141:671-678. https://doi.org/10.1099/13500872-141-3-671
  34. Theodorou, M.K., Williams, B.A., Dhanoa, M.S., McAllan, A.B. and France, J. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology. 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6
  35. Valadares, R.F.D., Broderick, G.A., Valadares, S.C. and Clayton, M.K. 1999. Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. Journal of Dairy Science. 82:2686-2696. https://doi.org/10.3168/jds.S0022-0302(99)75525-6
  36. Van Soest, P.J., Robertson, J.B. and Lewis, B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  37. Wallace, R.J. 2004. Antimicrobial properties of plant secondary metabolites. Proceeding of the Nutrion Society. 63:621-629. https://doi.org/10.1079/PNS2004393
  38. Wen-Shyg Chiou, P., Chen, C.-R., Chen, K.-J. and Yu, B. 1998. Wet brewers' grains or bean curd pomance as partial replacement of soybean meal for lactating cows. Animal Feed Science and Technology. 74:123-134. https://doi.org/10.1016/S0377-8401(98)00170-9
  39. Xu, C.C., Cai, Y., Zhang, J.G. and Ogawa, M. 2007. Fermentation quality and nutritive value of a total mixed ration silage containing coffee grounds at ten or twenty percent of dry matter. Journal of Animal. Science. 85:1024-1029. https://doi.org/10.2527/jas.2005-628

Cited by

  1. Nutritional Evaluation of Rice with Different Processing Treatments on in vitro Rumen Fermentation Characteristics and in situ Degradation vol.26, pp.2, 2018, https://doi.org/10.11625/KJOA.2018.26.2.281