• Title/Summary/Keyword: kinematic

Search Result 2,909, Processing Time 0.029 seconds

A New Kinematic Analysis of 6-3 Stewart Platform Manipulator (6-3 스튜워트 플랫폼 운동장치의 새로운 기구학 해석방법)

  • Kim, Nak-In;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1206-1212
    • /
    • 2001
  • The kinematic analysis of Stewart platform manipulator(SPM) is carried out in order to reduce the calculation time for its forward kinematic solution when the iterative numerical method is employed. The kinematic equations for three substructures of the 6-3 SPM are newly derived by introducing Denavit-Hartenberg link parameters and using kinematic constraints associated with the SPM and substructure kinematics. It is shown that the forward kinematics can be easily solved from three nonlinear equations with three unknown variables only, leading to a great reduction in calculation time.

Kinematic Modeling for Autonomous Bicycle Using Differential Motion Transformation (미소운동 변환을 이용한 자율주행 자전거의 기구학 모델)

  • Yi, Soo-Yeong
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.292-297
    • /
    • 2013
  • This paper presents a new method of kinematic modeling for autonomous bicycle by using the differential motion transformation. Kinematic model is indispensable to trajectory planning and control for an autonomous mobile robot. The conventional methods of kinematic modeling for an autonomous bicycle depend on intuition by geometry. On the contrary, the proposed method in this paper is based on the systematic differential motion transformation, thus applicable to various types of autonomous bicycles. The differential motion transformation gives Jacobian between two coordinate frames and the velocity kinematics as a result.

Development of a Kinematic Wave Model to Route Overland Flow in Vegetated Area (II) -Runoff Plot Experiments and Model Application- (초지의 지표면 흐름을 추적하기 위한 Kinematic Wave Model의 개발(II) - 포장실험과 모형의 응용 -)

  • ;W.L.Magette
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.74-80
    • /
    • 1993
  • Runoff simulation tests to investigate the flow mechanics of nonsuomerged overland flow in a natural grass intervening land system were condueted and a modified kinematic wave overland runoff model developed by Choi et al. (1993) was verified. Nonhomogeneity and heterogeneity of the soil, slope, local topography, infiltration, grass density, and the density and activity of the soil microhes and wild animals were the major factors affecting the flow. Streamlines were disturbed by grass stems and small concentrated flows due to the disturbed streamlines and local topography were observed a lot. Relatively larger concentrated flows were observed where bundles of grass were dominant than where individual grasses were growing. Predicted hydrographs were agreed verv well with measured hydrographs. Since the modified model considers grass density in computing flow depth and hydraulic radius, it can be better than existing kinematic wave model if it were used to route nonpoint source pollutant attenuation processes in many grass intervening land systems.

  • PDF

Forward Velocity Estimation Algorithm for Planar Mobile Robots

  • Lee, Seung-Eun;Kim, Wheekuk;Yi, Byung-Ju;You, Bum-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.51.5-51
    • /
    • 2001
  • The sliding and/or skidding motions generally occur to a car - like planar mobile robot consisting of four conventional fixed wheels attached on two parallel axles. Thus, the kinematic model of such mobile robot should include the description of skidding and sliding frictional motions. However, most of previous kinematic models do not take these frictional motions into account the kinematic model, as the work done by Muir and Newman [1]. Thus, does it result in least square solution in estimating sensed forward velocity. In this paper, the sensed forward velocity estimation algorithm for mobile robots is proposed, which not only includes those skidding and sliding frictional motions into kinematic model but also utilizes only the minimal set of dependent internal kinematic variables of the mobile robot. Then, ...

  • PDF

Analaysis and design of redundant parallel manipulators (여유 자유도 병렬형 로봇의 분석 및 설계)

  • Kim, Sung-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.482-489
    • /
    • 1997
  • This paper presents the analysis of the kinematics and dynamics of redundant parallel manipulators, and provides design guides for advanced parallel mainpulators with high performance. Three types of redundancies are considered which include the redundancies in serial chain, joint actuation, and parallelism. First, the kinematic and dynamic models of a redundant parallel manipulator are obtained in both joint and Cartesian spaces, and the kinematic and dynamic manipulabilities are defined for the performance evaluation. The effects of the three types of redundancies on the kinematic and dynamic performance of a parallel manipulator are then analyzed and compared, providing a set of guides for the design of advanced parallel manipulators. Finally, the simulation results using planer parallel manipulators are given.

  • PDF

Real-Time Estimation of Stewart Platform Forward Kinematic Solution (스튜어트 플랫폼 순기구학 해의 실시간 추정기법)

  • 정규홍;이교일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1632-1642
    • /
    • 1994
  • The Stewart Platform is a six-degree-of-freedom in-parallel-actuated manipiulator mechanism. The kinematic behavior of parallel mechanisms shows inverse characteristics as compared that of serial mechanisms; i.e, the inverse kinematic problem of Stewart Platform is straightforward, but no closed form solution of the forward kinematic problem has been previously presented. Thus it is difficult to calculate the 6 DOF displacement of the platform from the measured lengths of the six actuators in real time. Here, a real-time estimation algorithm which solves the Stewart Platform kinematic problem is proposed and tested through computer simulations and experiments. The proposed algorithm shows stable convergence characteristics, no estimation errors in steady state and good estimation performance with higher sampling rate. In experiments it is shown that the estimation result is the same as that of simulation even in the presence of measurement noise.

Development of Kinematic Calibration System for a Parallel-typed Machining Center Tool (병렬기구형 공작기계의 보정 시스템 개발)

  • Kim, Tae-Sung;Park, Kun-Woo;Yoon, Tae-Sung;Lee, Min-Ki
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.521-526
    • /
    • 2001
  • This research develops a low-cost and high accurate kinematic calibration method for a parallel typed machining center tool. A planar table is used for a mechanical fixture restricting the platform to place at the constrained pose and a low-cost and high accurate digital indicator is employed for a device checking if the constrained movement is satisfied within the established range. The kinematic parameters calibrated with respect to a single plane aren't influenced from the misalignment of the plane. A parameter observability is successfully obtained even through one planar constraint, which guarantees that the kinematic parameters is estimated by minimizing the cost function.

  • PDF

Kinematic Synthesis and Analysis of RSS-SC Suspension System Using Acceptable Tolerances of Motion (운동의 허용공차를 이용한 RSSS-SC 현장장치의 기구학적 설계)

  • 김선평;심재경
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2672-2679
    • /
    • 2000
  • In synthesizing and RSSS-SC mechanism that is the kinematic model of the McPherson strut suspension system in automobiles, the design equations for R-S, S-S and S-C dyads should be solved separately for a given set of prescribed positions. The number of prescribed positions that the RSSS-SC mechanism can be synthesized is up to three because of the S-C dyad. This limitation may cause unsatisfactory results in synthesized joint positions. This paper presents a kinematic synthesis method to place the joints of an RSSS-SC mechanism in desired boundaries by varying the prescribed positions of the mechanism within acceptable tolerances. The sensitivity analysis of the joint positions is used determine which displacement parameter should be altered to fulfill this task.

Numerical Kinematic Analysis of the Standard Macpherson Motor-Vehicle Suspension System

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1961-1968
    • /
    • 2003
  • In this paper, an efficient numerical algorithm for the kinematic analysis of the standard MacPherson suspension system is presented. The kinematic analysis of the suspension mechanism is carried out in terms of the rectangular Cartesian coordinates of some defined points in the links and at the kinematic joints. Geometric constraints that fix the distances between the points belonging to the same rigid link are introduced. The nonlinear constraint equations are solved by iterative numerical methods. The corresponding linear equations of the velocity and acceleration are solved to yield the velocities and accelerations of the unknown points. The velocities and accelerations of other points of interest as well as the angular velocity and acceleration of any link in the mechanism can be calculated.

Inverse Kinematic and Dynamic Analyses of 6-DOF PUS Type parallel Manipulators

  • Kim, Jong-Phil;Jeha Ryu
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • This paper presents inverse kinematic and dynamic analyses of HexaSlide type six degree-of-freedom parallel manipulators. The HexaSlide type parallel manipulators (HSM) can be characterized as an architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. In the inverse kinematic analyses, the slider and link motion (position, velocity, and acceleration) is computed given the desired mobile platform motion. Based on the inverse kinematic analysis, in order to compute the required actuator forces given the desired platform motion, inverse dynamic equations of motion of a parallel manipulator is derived by the Newton-Euler approach. In this derivation, the joint friction as well as all link inertia are included. Relative importance of the link inertia and joint frictions on the computed torque is investigated by computer simulations. It is expected that the inverse kinematic and dynamic equations can be used in the computed torque control and model-based adaptive control strategies.