• Title/Summary/Keyword: key block

Search Result 695, Processing Time 0.029 seconds

An Implementation of 3D Graphic Accelerator for Phong Shading (퐁 음영법을 위한 3차원 그래픽 가속기의 구현)

  • Lee, Hyung;Park, Youn-Ok;Park, Jong-Won
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.526-534
    • /
    • 2000
  • There have been many researches on the 3D graphic accelerator for high speed by needs of CAD/CAM,3D modeling, virtual reality or medical image. In this paper, an SIMD processor architecture for 3D graphic accelerator is proposed in order to improve the processing time of the 3D graphics, and a parallel Phong shading algorithm is presented to estimate performance of the proposed architecture. The proposed SIMD processor architecture for 3D graphic accelerator consists of PCI local bus interface, 16 Processing Elements (PE's), and Park's multi-access memory system (NAMS) that has 17 memory modules. A serial algorithm for Phong shading is modified for the architecture and the main key is to divide a polygon into $4\times{4}$ squares. And, for processing a square, 4 PE's are regarded as a PE Grou logically. Since MAMS can support block access type with interval 1, it is possible that 4 PE Groups process a square at a time. In consequence, 16 pixels are processed simultaneously. The proposed SIMD processor architecture is simulated by CADENCE Verilog-XL that is a package for the hardware simulation. With the same simulated results as that of the serial algorithm, the speed enhancement by the parallel algorithm to the serial one is 5.68.

  • PDF

The Structural and Functional Role of p53 as a Cancer Therapeutic Target (암 치료 표적으로서 p53의 구조적 및 기능적 역할)

  • Han, Chang Woo;Park, So Young;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.488-495
    • /
    • 2018
  • The p53 gene plays a critical role in the transcriptional regulation of cellular response to stress, DNA damage, hypoxia, and tumor development. Keeping in mind the recently discovered manifold physiological functions of p53, its involvement in the regulation of cancer is not surprising. In about 50% of all human cancers, inactivation of p53's protein function occurs either through mutations in the gene itself or defects in the mechanisms that activate it. This disorder plays a crucial role in tumor evolution by allowing the evasion of a p53-dependent response. Many recent studies have focused on directly targeting p53 mutants by identifying selective, small molecular compounds to deplete them or to restore their tumor-suppressive function. These small molecules should effectively regulate various interactions while maintaining good drug-like properties. Among them, the discovery of the key p53-negative regulator, MDM2, has led to the design of new small molecule inhibitors that block the interaction between p53 and MDM2. Some of these small molecule compounds have now moved from proof-of-concept studies into clinical trials, with prospects for further, more personalized anti-carcinogenic medicines. Here, we review the structural and functional consequences of wild type and mutant p53 as well as the development of therapeutic agents that directly target this gene, and compounds that inhibit the interaction between it and MDM2.

A 5.4Gb/s Clock and Data Recovery Circuit for Graphic DRAM Interface (그래픽 DRAM 인터페이스용 5.4Gb/s 클럭 및 데이터 복원회로)

  • Kim, Young-Ran;Kim, Kyung-Ae;Lee, Seung-Jun;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.19-24
    • /
    • 2007
  • With recent advancement of high-speed, multi-gigabit data transmission capabilities, serial links have been more widely adopted in industry than parallel links. Since the parallel link design forces its transmitter to transmit both the data and the clock to the receiver at the same time, it leads to hardware's intricacy during high-speed data transmission, large power consumption, and high cost. Meanwhile, the serial links allows the transmitter to transmit data only with no synchronized clock information. For the purpose, clock and data recovery circuit becomes a very crucial key block. In this paper, a 5.4Gbps half-rate bang-bang CDR is designed for the applications of high-speed graphic DRAM interface. The CDR consists of a half-rate bang-bang phase detector, a current-mirror charge-pump, a 2nd-order loop filter, and a 4-stage differential ring-type VCO. The PD automatically retimes and demultiplexes the data, generating two 2.7Gb/s sequences. The proposed circuit is realized in 66㎚ CMOS process. With input pseudo-random bit sequences (PRBS) of $2^{13}-1$, the post-layout simulations show 10psRMS clock jitter and $40ps_{p-p}$ retimed data jitter characteristics, and also the power dissipation of 80mW from a single 1.8V supply.

A Test for Nonlinear Causality and Its Application to Money, Production and Prices (통화(通貨)·생산(生産)·물가(物價)의 비선형인과관계(非線型因果關係) 검정(檢定))

  • Baek, Ehung-gi
    • KDI Journal of Economic Policy
    • /
    • v.13 no.4
    • /
    • pp.117-140
    • /
    • 1991
  • The purpose of this paper is primarily to introduce a nonparametric statistical tool developed by Baek and Brock to detect a unidirectional causal ordering between two economic variables and apply it to interesting macroeconomic relationships among money, production and prices. It can be applied to any other causal structure, for instance, defense spending and economic performance, stock market index and market interest rates etc. A key building block of the test for nonlinear Granger causality used in this paper is the correlation. The main emphasis is put on nonlinear causal structure rather than a linear one because the conventional F-test provides high power against the linear causal relationship. Based on asymptotic normality of our test statistic, the nonlinear causality test is finally derived. Size of the test is reported for some parameters. When it is applied to a money, production and prices model, some evidences of nonlinear causality are found by the corrected size of the test. For instance, nonlinear causal relationships between production and prices are demonstrated in both directions, however, these results were ignored by the conventional F-test. A similar results between money and prices are obtained at high lag variables.

  • PDF

Design of a 26ps, 8bit Gated-Ring Oscillator Time-to-Digital Converter using Vernier Delay Line (버니어 지연단을 이용한 26ps, 8비트 게이티드 링 오실레이터 시간-디지털 변환기의 설계)

  • Jin, Hyun-Bae;Park, Hyung-Min;Kim, Tae-Ho;Kang, Jin-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.2
    • /
    • pp.7-13
    • /
    • 2011
  • This paper presents a Time-to-Digital Converter which is a key block of an All-Digital Phase Locked Loop. In this work, a Vernier Delay Line is added in a conventional Gated Ring Oscillator, so it could get multi-phases and a high resolution. The Gated Ring Oscillator uses 7 unit delay cell, the Vernier Delay Line is used each delay cell. So proposed Time-to-Digital Converter uses total 21 phases. This Time-to-Digital Converter circuit is designed and laid out in $0.13{\mu}m$ 1P-6M CMOS technology. The proposed Time-to-Digital Converter achieves 26ps resolution, maximum input signal frequency is 100MHz and the digital output of proposed Time-to-Digital Converter are 8-bits. The proposed TDC detect 5ns phase difference between Start and Stop signal. A power consumption is 8.4~12.7mW depending on Enable signal width.

A Comparative Study of Block Chain : Bitcoin·Namecoin·MediBloc (블록체인 비교연구: 비트코인·네임코인·메디블록)

  • Kim, Ji Yeon
    • Journal of Science and Technology Studies
    • /
    • v.18 no.3
    • /
    • pp.217-255
    • /
    • 2018
  • Bitcoin, which appeared in 2008, was merely a conceptual virtual currency, but it now enjoys the status as actual money. Bitcoin is an electronic money system that can be traded directly without a central trust institution. Thanks to the popularization of Bitcoin, blockchain technology has become a widespread concern. That technology is expanding not only the currency mechanism, but also a variety of other services. The possibility of a blockchain in relation to actual currency is ongoing. This paper investigates the technological characteristics and social construction of the blockchain by comparing the cases of Bitcoin, Namecoin, and MediBloc among blockchain applications. Namecoin emerged in 2013 is an attempt to replace the centralized Internet Domain Name System(DNS). There has been controversy over that current system for a long time, but replacing the already established system is not easy. Nevertheless, Namecoin has potential as an alternative. Meanwhile, MediBloc is an application that involves distributed management of medical data in South Korea. MediBloc claims that the key producers of medical data are patients themselves. This is to challenge to the question who is a knowledge producer of medical data. Through these three cases, it has discussed that blockchain technology does supports to form more democratic decision-making or simply provide a technical solution as automation. As a citizen, we can intervene in the realization of blockchains by presenting social agenda. This will be a method of the social construction of technology.

A Study on the Competition of the World Women's Handball Championship Using Bigdata : Focused on the top 5 teams of the 2007-2019 World Women's Handball Championship (빅데이터를 활용한 여자핸드볼선수권대회 전력 비교 연구 -2007~2019년 세계여자핸드볼선수권대회 상위 5개팀과 대한민국을 중심으로-)

  • Kang, Yong-Gu;Kwak, Han-Pyong
    • Journal of Industrial Convergence
    • /
    • v.19 no.1
    • /
    • pp.147-158
    • /
    • 2021
  • This study was conducted seven times from 2007 to the 2019 Women's World Handball Championships to analyze and strengthen the strength of the Korean women's handball team through the analysis of the top five countries' strengths. Among the 41 national teams participating in the World Women's Handball Championship, a total of five national teams, including the Netherlands, Norway, Russia, Spain, and France, were selected for the final study. Among the records provided by the International Handball Federation (IHF), the ranking was selected by analyzing the competition records of 41 participating countries, and technical statistics and frequency analysis were conducted using the SPSS/PC+ Ver21.0 program. based on the accumulated records of the top five women's handball competitions, handball attack and defense strategies that can make up for the inferiority in future physical conditions are needed and detailed follow-up studies are needed. Also, we hope to use it as a basic resource for improving the performance of Korean women's handball players and to play a key role in enhancing the level of women's handball at the 2021 Tokyo Olympics.

Multiple Linear Cryptanalysis-Revisited (블록 암호에 대한 효율적인 선형 공격 방법)

  • Choi, Jun;Hong, Deuk-Jo;Hong, Seok-Hee;Lee, Sang-Jin;Im, Jong-In
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.6
    • /
    • pp.59-69
    • /
    • 2002
  • Many Linear attacks have introduced after M. Matsui suggested Linear Cryptanalysis in 1993. The one of them is the method suggested by B. Kaliski and M. Robshaw. It was a new method using multiple linear approximations to attack for block ciphers. It requires less known plaintexts than that of Linear Cryptanalysis(LC) by Matsui, but it has a problem. In this paper, we will introduce the new method using multiple linear approximation that can solve the problem. Using the new method, the requirements of the known plaintexts is 5(1.25) times as small as the requirements in LC on 8(16) round DES with a success rate of 95%(86%) respectively. We can also adopt A Chosen Plaintext Linear Attack suggested by L. R. Knudsen and J. E. Mathiassen and then our attack requires about $2^{40.6}$ chosen plaintexts to recover 15 key bits with 86% success rate. We believe that the results in this paper contain the fastest attack on the DES full round reported so far in the open literature.

The Roles of Excitatory Amino Acid System in the Organophosphate-induced Brain Damage (유기인제에 의한 뇌 손상에 있어서 흥분성 아미노산의 역할)

  • Ko, Bong-Woo;Park, Eun-Hae;Kim, Dong-Sik;Bang, Sung-Hyun;Jin, Joo-Yeon;Kim, Dae-Sung;Ju, Chang-Wan;Lee, Kyung-Kap;Cho, Moon-Jae;Kimcho, So-Mi;Lee, Bong-Hee;Riu, Key-Zung;Park, Min-Kyoung;Lee, Young-Jae
    • Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.148-152
    • /
    • 2001
  • This study investigated the role of excitatory amino acid systems in the initiation of organophosphate-induced seizures and brain damages in rats through quantitative in vivo microdialysis. Microdialysates were collected from the hippocampus of rat brain, treated with diisopropylfluorophosphate (DFP; 2.67 mg/kg, s.c.) alone, and/or atropine sulfate (15 mg/kg, i.m.) and procyclidine (30 mg/kg, i.m.). The protective effects of atropine, a muscarinic blocker, and/or procyclidine, a N-methyl-D-aspartate and cholinergic antagonist, against DFP were examined. DFP treatment increased the levels of aspartate (Asp) and glutamate (Glu) significantly in the hippocampal persuate with the induction of seizures. Treatment of procyclidine could effectively block the increase of Asp and Glu levels. Atropine treatment showed no significant anticonvulsive effects against DFP-induced seizures. The increases of Asp and Glu levels by DFP were also completely blocked through the combined treatment of atropine and procyclidine. Histopathological findings on the hippocampus confirmed the above results. More effective protection was observed through the treatments of procyclidine alone or of both procyclidine and atropine than atropine alone against DFP-induced brain damage. Procyclidine was shown to be effective in DFP-induced seizures.

  • PDF

Development of a Small Animal Positron Emission Tomography Using Dual-layer Phoswich Detector and Position Sensitive Photomultiplier Tube: Preliminary Results (두층 섬광결정과 위치민감형광전자증배관을 이용한 소동물 양전자방출단층촬영기 개발: 기초실험 결과)

  • Jeong, Myung-Hwan;Choi, Yong;Chung, Yong-Hyun;Song, Tae-Yong;Jung, Jin-Ho;Hong, Key-Jo;Min, Byung-Jun;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.5
    • /
    • pp.338-343
    • /
    • 2004
  • Purpose: The purpose of this study was to develop a small animal PET using dual layer phoswich detector to minimize parallax error that degrades spatial resolution at the outer part of field-of-view (FOV). Materials and Methods: A simulation tool GATE (Geant4 Application for Tomographic Emission) was used to derive optimal parameters of small PET, and PET was developed employing the parameters. Lutetium Oxyorthosilicate (LSO) and Lutetium-Yttrium Aluminate-Perovskite(LuYAP) was used to construct dual layer phoswitch crystal. $8{\times}8$ arrays of LSO and LuYAP pixels, $2mm{\times}2mm{\times}8mm$ in size, were coupled to a 64-channel position sensitive photomultiplier tube. The system consisted of 16 detector modules arranged to one ring configuration (ring inner diameter 10 cm, FOV of 8 cm). The data from phoswich detector modules were fed into an ADC board in the data acquisition and preprocessing PC via sockets, decoder block, FPGA board, and bus board. These were linked to the master PC that stored the events data on hard disk. Results: In a preliminary test of the system, reconstructed images were obtained by using a pair of detectors and sensitivity and spatial resolution were measured. Spatial resolution was 2.3 mm FWHM and sensitivity was 10.9 $cps/{\mu}Ci$ at the center of FOV. Conclusion: The radioactivity distribution patterns were accurately represented in sinograms and images obtained by PET with a pair of detectors. These preliminary results indicate that it is promising to develop a high performance small animal PET.