References
- Bochkareva, E., Kaustov, L., Ayed, A., Yi, G. S., Lu, Y., Pineda-Lucena, A., Liao, J. C., Okorokov, A. L., Milner, J., Arrowsmith, C. H. and Bochkarev, A. 2005. Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc. Natl. Acad. Sci. USA. 102, 15412-15417. https://doi.org/10.1073/pnas.0504614102
- Brown, C. J., Quah, S. T., Jong, J., Goh, A. M., Chiam, P. C., Khoo, K. H., Choong, M. L., Lee, M. A., Yurlova, L., Zolghadr, K., Joseph, T. L., Verma, C. S. and Lane, D. P. 2013. Stapled peptides with improved potency and specificity that activate p53. ACS Chem. Biol. 8, 506-512. https://doi.org/10.1021/cb3005148
- Burmakin, M., Shi, Y., Hedstrom, E., Kogner, P. and Selivanova, G. 2013. Dual targeting of wild-type and mutant p53 by small molecule RITA results in the inhibition of N-Myc and key survival oncogenes and kills neuroblastoma cells in vivo and in vitro. Clin. Cancer Res. 19, 5092-5103. https://doi.org/10.1158/1078-0432.CCR-12-2211
- Bykov, V. J. N., Eriksson, S. E., Bianchi, J. and Wiman, K. G. 2018. Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer 18, 89-102.
- Canadillas, J. M. P., Tidow, H., Freund, S. M. V., Rutherford, T. J., Ang, H. C. and Fersht, A. R. 2006. Solution structure of p53 core domain: Structural basis for its instability. Proc. Natl. Acad. Sci. USA. 103, 2109-2114. https://doi.org/10.1073/pnas.0510941103
- Chi, S. W. 2014. Structural insights into the transcription-independent apoptotic pathway of p53. BMB Rep. 47, 167-172. https://doi.org/10.5483/BMBRep.2014.47.3.261
- Chi, S. W., Lee, S. H., Kim, D. H., Ahn, M. J., Kim, J. S., Woo, J. Y., Torizawa, T., Kainosho, M. and Han, K. H. 2005. Structural details on mdm2-p53 interaction. J. Biol. Chem. 280, 38795-38802. https://doi.org/10.1074/jbc.M508578200
- Collavin, L., Lunardi, A. and Del, Sal G. 2010. p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ. 17, 901-911. https://doi.org/10.1038/cdd.2010.35
- Demir, O., Ieong, P. U. and Amaro, R. E. 2017. Full-length p53 tetramer bound to DNA and its quaternary dynamics. Oncogene 36, 1451-1460. https://doi.org/10.1038/onc.2016.321
- Di Lello, P., Jenkins, L. M. M., Jones, T. N., Nguyen, B. D., Hara, T., Yamaguchi, H., Dikeakos, J. D., Appella, E., Legault, P. and Omichinski, J. G. 2006. Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol. Cell 22, 731-740. https://doi.org/10.1016/j.molcel.2006.05.007
- Dornan, D., Shimizu, H., Burch, L., Smith, A. J. and Hupp, T. R. 2003. The proline repeat domain of p53 binds directly to the transcriptional coactivator p300 and allosterically controls DNA-dependent acetylation of p53. Mol. Cell. Biol. 23, 8846-8861. https://doi.org/10.1128/MCB.23.23.8846-8861.2003
-
Duan, J. X. and Nilsson, L. 2006. Effect of
$Zn^{2+}$ on DNA recognition and stability of the p53 DNA-binding domain. Biochemistry 45, 7483-7492. https://doi.org/10.1021/bi0603165 - Espinoza-Fonseca, L. M. and Trujillo-Ferrara, J. G. 2006. Transient stability of the helical pattern of region F19-L22 of the N-terminal domain of p53: a molecular dynamics simulation study. Biochem. Biophys. Res. Commun. 343, 110-116. https://doi.org/10.1016/j.bbrc.2006.02.129
- Feng, H. Q., Jenkins, L. M. M., Durell, S. R., Hayashi, R., Mazur, S. J., Cherry, S., Tropea, J. E., Miller, M., Wlodawer, A., Appella, E. and Bai, Y. 2009. Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure 17, 202-210. https://doi.org/10.1016/j.str.2008.12.009
- Fotouhi, N. and Graves, B. 2005. Small molecule inhibitors of p53/MDM2 interaction. Curr. Top. Med. Chem. 5, 159-165. https://doi.org/10.2174/1568026053507705
- Freed-Pastor, W. A. and Prives, C. 2012. Mutant p53: one name, many proteins. Genes Dev. 26, 1268-1286. https://doi.org/10.1101/gad.190678.112
- Grasberger, B. L., Lu, T., Schubert, C., Parks, D. J., Carver, T. E., Koblish, H. K., Cummings, M. D., LaFrance, L. V., Milkiewicz, K. L., Calvo, R. R., Maguire, D., Lattanze, J., Franks, C. F., Zhao, S., Ramachandren, K., Bylebyl, G. R., Zhang, M., Manthey, C. L., Petrella, E. C., Pantoliano, M. W., Deckman, I. C., Spurlino, J. C., Maroney, A. C., Tomczuk, B. E., Molloy, C. J. and Bone, R. F. 2005. Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J. Med. Chem. 48, 909-912. https://doi.org/10.1021/jm049137g
- Halazonetis, T. D., Gorgoulis, V. G. and Bartek, J. 2008. An oncogene-induced DNA damage model for cancer development. Science 319, 1352-1355. https://doi.org/10.1126/science.1140735
- Hiraki, M., Hwang, S. Y., Cao, S., Ramadhar, T. R., Byun, S., Yoon, K. W., Lee, J. H., Chu, K., Gurkar, A. U., Kolev, V., Zhang, J., Namba, T., Murphy, M. E., Newman, D. J., Mandinova, A., Clardy, J. and Lee, S. W. 2015. Small- molecule reactivation of mutant p53 to wild-type-like p53 through the p53-Hsp40 regulatory axis. Chem. Biol. 22, 1206-1216. https://doi.org/10.1016/j.chembiol.2015.07.016
- Ho, W. C., Luo, C., Zhao, K., Chai, X., Fitzgerald, M. X. and Marmorstein, R. 2006. High-resolution structure of the p53 core domain: implications for binding small-molecule stabilizing compounds. Acta Crystallogr. D Biol. Crystallogr. 62, 1484-1493. https://doi.org/10.1107/S090744490603890X
- Hollstein, M., Sidransky, D., Vogelstein, B. and Harris, C. C. 1991. p53 mutations in human cancers. Science 253, 49-53. https://doi.org/10.1126/science.1905840
- Huang, L., Yan, Z., Liao, X. D., Li, Y., Yang, J., Wang, Z. G., Zuo, Y., Kawai, H., Shadfan, M., Ganapathy, S. and Yuan, Z. M. 2011. The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo. Proc. Natl. Acad. Sci. USA. 108, 12001-12006. https://doi.org/10.1073/pnas.1102309108
- Issaeva, N., Bozko, P., Enge, M., Protopopova, M., Verhoef, L. G., Masucci, M., Pramanik, A. and Selivanova, G. 2004. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat. Med. 10, 1321-1328. https://doi.org/10.1038/nm1146
-
Johnson, R. F. and Perkins, N. D. 2012. Nuclear
$factor-{\kappa}B$ , p53, and mitochondria: regulation of cellular metabolism and the Warburg effect. Trends Biochem. Sci. 37, 317-324 https://doi.org/10.1016/j.tibs.2012.04.002 - Jeffrey, P. D., Gorina, S. and Pavletich, N. P. 1995. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267, 1498-1502. https://doi.org/10.1126/science.7878469
- Joerger, A. C. and Fersht, A. R. 2010. The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb. Perspect. Biol. 2, a000919.
- Kamada, R., Toguchi, Y., Nomura, T., Imagawa, T. and Sakaguchi, K. 2016. Tetramer formation of tumor suppressor protein p53: Structure, function, and applications. Biopolymers 106, 598-612. https://doi.org/10.1002/bip.22772
- Karlsson, G. B., Jensen, A., Stevenson, L. F., Woods, Y. L., Lane, D. P. and Sorensen, M. S. 2004. Activation of p53 by scaffold-stabilised expression of Mdm2-binding peptides: visualisation of reporter gene induction at the single-cell level. Br. J. Cancer 91, 1488-1494. https://doi.org/10.1038/sj.bjc.6602143
- Khoo, K. H., Andreeva, A. and Fersht, A. R. 2009. Adaptive evolution of p53 thermodynamic stability. J. Mol. Biol. 393, 161-175. https://doi.org/10.1016/j.jmb.2009.08.013
- Khoo, K. H., Verma, C. S. and Lane, D. P. 2014. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat. Rev. Drug Discov. 13, 217-236. https://doi.org/10.1038/nrd4236
- Koblish, H. K, Zhao, S., Franks, C. F., Donatelli, R. R., Tominovich, R. M., LaFrance, L. V., Leonard, K. A., Gushue, J. M., Parks, D. J., Calvo, R. R., Milkiewicz, K. L., Marugan, J. J., Raboisson, P., Cummings, M. D., Grasberger, B. L., Johnson, D. L., Lu, T., Molloy, C. J. and Maroney, A. C. 2006. Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo. Mol. Cancer Ther. 5, 160-169. https://doi.org/10.1158/1535-7163.MCT-05-0199
- Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J. and Pavletich, N. P. 1996. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948-953. https://doi.org/10.1126/science.274.5289.948
- Lambert, J. M., Gorzov, P., Veprintsev, D. B., Soderqvist, M., Segerback, D., Bergman, J., Fersht, A. R., Hainaut, P., Wiman, K. G. and Bykov, V. J. 2009. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15, 376-388. https://doi.org/10.1016/j.ccr.2009.03.003
- Lane, D. P. and Verma, C. 2012. Mdm2 in evolution. Genes Cancer 3, 320-324. https://doi.org/10.1177/1947601912458285
- Lee, H., Mok, K. H., Muhandiram, R., Park, K. H., Suk, J. E., Kim, D. H., Chang, J., Sung, Y. C., Choi, K. Y. and Han, K. H. 2000. Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J. Biol. Chem. 275, 29426-29432. https://doi.org/10.1074/jbc.M003107200
- Leroy, B., Anderson, M. and Soussi, T. 2014. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum. Mutat. 35, 672-688. https://doi.org/10.1002/humu.22552
- Liu, X., Wilcken, R., Joerger, A. C., Chuckowree, I. S., Amin, J., Spencer, J. and Fersht, A. R. 2013. Small molecule induced reactivation of mutant p53 in cancer cells. Nucleic Acids Res. 41, 6034-6044. https://doi.org/10.1093/nar/gkt305
- Lucas, B. S., Fisher, B., McGee, L. R., Olson, S. H., Medina, J. C. and Cheung, E. 2012. An expeditious synthesis of the MDM2-p53 inhibitor AM-8553. J. Am. Chem. Soc. 134, 12855-12860. https://doi.org/10.1021/ja305123v
- Muller, P. A., Vousden, K. H. and Norman, J. C. 2011. p53 and its mutants in tumor cell migration and invasion. J. Cell Biol. 192, 209-218. https://doi.org/10.1083/jcb.201009059
- Olivier, M., Hollstein, M. and Hainaut, P. 2010. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2, a001008.
- Oren, M. and Rotter, V. 1999. Introduction: p53 - the first twenty years. Cell. Mol. Life Sci. 55, 9-11. https://doi.org/10.1007/s000180050265
- Saha, T., Kar, R. K. and Sa, G. 2015. Structural and sequential context of p53: A review of experimental and theoretical evidence. Prog. Biophys. Mol. Biol. 117, 250-263. https://doi.org/10.1016/j.pbiomolbio.2014.12.002
- Shangary, S., Qin, D., McEachern, D., Liu, M., Miller, R. S., Qiu, S., Nikolovska-Coleska, Z., Ding, K., Wang, G., Chen, J., Bernard, D., Zhang, J., Lu, Y., Gu, Q., Shah, R. B., Pienta, K. J., Ling, X., Kang, S., Guo, M., Sun, Y., Yang, D. and Wang, S. 2008. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc. Natl. Acad. Sci. USA. 105, 3933-3938. https://doi.org/10.1073/pnas.0708917105
- Takimoto, R., Wang, W., Dicker, D. T., Rastinejad, F., Lyssikatos, J. and el-Deiry, W. S. 2002. The mutant p53-conformation modifying drug, CP-31398, can induce apoptosis of human cancer cells and can stabilize wild-type p53 protein. Cancer Biol. Ther. 1, 47-55. https://doi.org/10.4161/cbt.1.1.41
- Tan, B. X., Liew, H. P., Chua, J. S., Ghadessy, F. J., Tan, Y. S., Lane, D. P. and Coffill, C. R. 2017. Anatomy of Mdm2 and Mdm4 in evolution. J. Mol. Cell Biol. 9, 3-15.
- Tang, X., Zhu, Y., Han, L., Kim, A. L., Kopelovich, L., Bickers, D. R. and Athar, M. 2007. CP-31398 restores mutant p53 tumor suppressor function and inhibits UVB-induced skin carcinogenesis in mice. J. Clin. Invest. 117, 3753-3764. https://doi.org/10.1172/JCI32481
- Tuncbag, N., Kar, G., Gursoy, A., Keskin, O. and Nussinov, R. 2009. Towards inferring time dimensionality in protein-protein interaction networks by integrating structures: the p53 example. Mol. Biosyst. 5, 1770-1778. https://doi.org/10.1039/b905661k
- Uversky, V. N. 2016. p53 Proteoforms and intrinsic disorder: an illustration of the protein structure-function continuum concept. Int. J. Mol. Sci. 17, 1874. https://doi.org/10.3390/ijms17111874
- Valente, L. J., Gray, D. H., Michalak, E. M., Pinon-Hofbauer, J., Egle, A., Scott, C. L., Janic, A. and Strasser, A. 2013. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep. 3, 1339-1345. https://doi.org/10.1016/j.celrep.2013.04.012
- Vassilev, L. T., Vu, B. T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., Fotouhi, N. and Liu, E. A. 2004. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844-848. https://doi.org/10.1126/science.1092472
- Vogelstein, B., Lane, D. and Levine, A. J. 2000. Surfing the p53 network. Nature 408, 307-310. https://doi.org/10.1038/35042675
- Wallentine, B. D., Wang, Y., Tretyachenko-Ladokhina, V., Tan, M., Senear, D. F. and Luecke, H. 2013. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue. Acta Crystallogr. D Biol. Crystallogr. 69, 2146-2156. https://doi.org/10.1107/S0907444913020830
- Wang, B., Fang, L., Zhao, H., Xiang, T. and Wang, D. 2012. MDM2 inhibitor Nutlin-3a suppresses proliferation and promotes apoptosis in osteosarcoma cells. Acta Biochim. Biophys. Sin. (Shanghai). 44, 685-691. https://doi.org/10.1093/abbs/gms053
- Wang, H., Nan, L., Yu, D., Agrawal, S. and Zhang, R. 2001. Antisense anti-MDM2 oligonucleotides as a novel therapeutic approach to human breast cancer: in vitro and in vivo activities and mechanisms. Clin. Cancer Res. 7, 3613-3624.
- Wang, S., Zhao, Y., Aguilar, A., Bernard, D. and Yang, C. Y. 2017. Targeting the MDM2-p53 protein-protein interaction for new cancer therapy: progress and challenges. Cold Spring Harb. Perspect. Med. 7, a026245. https://doi.org/10.1101/cshperspect.a026245
- Wang, Y., Rosengarth, A. and Luecke, H. 2007. Structure of the human p53 core domain in the absence of DNA. Acta Crystallogr. D Biol. Crystallogr. 63, 276-281. https://doi.org/10.1107/S0907444906048499
-
Webster, G. A. and Perkins, N. D. 1999. Transcriptional Cross Talk between
$NF-{\kappa}B$ and p53. Mol. Cell. Biol. 19, 3485-3495. https://doi.org/10.1128/MCB.19.5.3485 - Xu, J., Timares, L., Heilpern, C., Weng, Z., Li, C., Xu, H., Pressey, J. G., Elmets, C. A., Kopelovich, L. and Athar, M. 2010. Targeting wild-type and mutant p53 with small molecule CP-31398 blocks the growth of rhabdomyosarcoma by inducing reactive oxygen species-dependent apoptosis. Cancer Res. 70, 6566-6576. https://doi.org/10.1158/0008-5472.CAN-10-0942
- Zacchi, P., Gostissa, M., Uchida, T., Salvagno, C., Avolio, F., Volinia, S., Ronai, Z., Blandino, G., Schneider, C. and Del Sal, G. 2002. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853-857. https://doi.org/10.1038/nature01120
- Zhao, D., Tahaney, W. M., Mazumdar, A., Savage, M. I. and Brown, P. H. 2017. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 74, 4171-4187. https://doi.org/10.1007/s00018-017-2575-0
- Zilfou, J. T. Hoffman, W. H., Sank, M., George, D. L. and Murphy, M. 2001. The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Mol. Cell. Biol. 21, 3974-3985. https://doi.org/10.1128/MCB.21.12.3974-3985.2001