DOI QR코드

DOI QR Code

Biological Degradation of Cypermethrin by Marine Bacteria, Cellulophaga lytica DAU203

해양 세균 Cellulophaga lytica DAU203에 의한 사이퍼메트린의 생물학적 분해

  • 이제훈 (동아대학교 생명자원과학대학 생명공학과) ;
  • 이용석 (동아대학교 생명자원과학대학 생명공학과) ;
  • 유아영 (부산대학교 미생물학과) ;
  • 최용락 (동아대학교 생명자원과학대학 생명공학과)
  • Received : 2018.02.03
  • Accepted : 2018.04.23
  • Published : 2018.04.30

Abstract

Cypermethrin, a commonly used domestic and agricultural pyrethroid pesticide, is widely considered detrimental to the environment and to many organisms because of its residual property and toxicity. Cellulophaga lytica DAU203, isolated from coastal sediment, was chosen because it degrade cypermethrin. Cellulophaga lytica DAU203 effectively degraded cypermethrin, as the utilized carbon source and substrate, in a mineral salt medium. Effective factors, such as carbon source, nitrogen source, initial pH, and temperature, for cypermethtin biological degradation by Cellulophaga lytica DAU203 were analyzed by one factor at a time method. Temperature ($22{\sim}42^{\circ}C$), initial pH (5~9), and yeast extract concentration (0.1~2.5%[w/v]) were selected as the three most important factors. There were optimized at $33.4^{\circ}C$, pH 7.7, and 2.4%(w/v) by response surface methodology, respectively. The Box- Behnken design consisting of 46 experimental runs with three replicates was used to optimize the independent variables which significantly influenced the cypermethrin biological degradation. This model for cypermethrin degradation by Cellulophaga lytica DAU203 is highly significant (p<0.05). Under the optimized condition, Cellulophaga lytica DAU203 degraded approximately 83.7 % of the cypermethrin within 5 days. These results suggest that Cellulophaga lytica DAU203 may be useful for the biological degradation of cypermethrin in cypermethrin-contaminated environments.

사이퍼메트린은 피레스로이드 계열 살충제로서 오랫동안 농업과 가정에서 이용되어 왔으며 그들의 잔여 성분과 독성에 대한 경각심이 고취되고 있다. 부산 인근의 해안에서 분리된 Cellulophaga lytica DAU203 균주가 사이퍼메트린의 생물학적 분해 활성을 나타내었다. DAU203 균주는 최소 배지에서 유일 탄소원으로 사이퍼메트린을 첨가하였을 때, 이를 분해하여 탄소원으로 활용 하였다. 반응표면분석법을 통하여 DAU203 균주의 사이퍼메트린 분해를 위한 최적 조건을 탐색하였다. 온도, pH와 yeast extract 첨가 농도와 같은 인자가 분해 활성에 영향을 미치는 것으로 분석 되었고, 각각의 최적 값은 $33.4^{\circ}C$, pH 7.7와 2.4%(w/v)이다. 최적 조건에서 DAU203 균주는 5일 동안 대략 83.7%의 사이퍼메트린을 분해하였다. 본 연구는 미생물 중에서 잘 연구되지 않은 해양 미생물에 대한 활용 가능성을 증가시켰다고 판단된다.

Keywords

References

  1. Chen, S. H., Dong, Y. H., Chang, C. Q., Deng, Y. Y., Zhang, X. F., Zhong, G. H., Song, H. W., Hu, M. Y. and Zhang, L. H. 2013. Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway. Bioresour. Technol. 132, 16-23. https://doi.org/10.1016/j.biortech.2013.01.002
  2. Chen, S. H., Hu, M. Y., Liu, J. J., Zhong, G. H., Yang, L., Rizwan-ul-Haq, M. and Han, H. T. 2011. Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. J. Hazard Mater. 187, 433-440. https://doi.org/10.1016/j.jhazmat.2011.01.049
  3. Chen, S. H., Luo, J. J., Hu, M. Y., Lai, K. P., Geng, P. and Huang, H. S. 2012. Enhancement of cypermethrin degradation by a coculture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01. Bioresour. Technol. 110, 97-104. https://doi.org/10.1016/j.biortech.2012.01.106
  4. Guo, P., Wang, B. Z., Hang, B. J., Li, L., Ali, S. W., He, J. and Li, S. P. 2009. Pyrethroid-degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. Int. Biodeterior. Biodegr. 63, 1107-1112. https://doi.org/10.1016/j.ibiod.2009.09.008
  5. Kuivila, K. M., Hladik, M. L., Ingersoll, C. G., Kemble, N. E., Moran, P. W., Calhoun, D. L., Nowell, L. H. and Giliom, R. J. 2012. Occurrence and potential sources of pyrethroid insecticides in stream sediments from seven U.S. metropolitan areas. Environ. Sci. Technol. 46, 4297-4303. https://doi.org/10.1021/es2044882
  6. Lao, W., Tiefenthaler, L., Greenstein, D. J., Maruya, K. A., Bay, S. M., Ritter, K. and Schiff, K. 2012. Pyrethroids in Southern California coastal sediments. Environ. Toxicol. Chem. 31, 1649-1656. https://doi.org/10.1002/etc.1867
  7. Shafer, T. J., Meyer, D. A. and Crofton, K. M. 2005. Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environ. Health Perspect. 113, 123-136.
  8. Soderlund, D. M., Clark, J. M., Sheets, L. P., Mullin, L. S., Piccirillo, V. J., Sargent, D., Stevens, J. T. and Weiner, M. L. 2002. Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171, 3-59. https://doi.org/10.1016/S0300-483X(01)00569-8
  9. Tallur, P. N., Megadi, V. B. and Ninnekar, H. Z. 2008. Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 19, 77-82. https://doi.org/10.1007/s10532-007-9116-8
  10. Weston, D. P., Holmes, R. W. and Lydy, M. J. 2009. Residential runoff as a source of pyrethroid pesticides to urban creeks. Environ. Pollut. 157, 287-294. https://doi.org/10.1016/j.envpol.2008.06.037
  11. Wolansky, M. J. and Harrill, J. A. 2008. Neurobehavioral toxicology of pyrethroid insecticides in adult animals: a critical review. Neurotoxicol. Teratol. 30, 55-78. https://doi.org/10.1016/j.ntt.2007.10.005
  12. Zhang, C., Jia, L., Wang, S. H., Qu, J., Li, K., Xu, L. L., Shi, Y. H. and Yan, Y. C. 2010. Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity. Bioresour. Technol. 101, 3423-3429. https://doi.org/10.1016/j.biortech.2009.12.083
  13. Zhang, C., Wang, S. H. and Yan, Y. C. 2011. Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production. Bioresour. Technol. 102, 7139-7146. https://doi.org/10.1016/j.biortech.2011.03.086