• Title/Summary/Keyword: kernel functions

Search Result 271, Processing Time 0.026 seconds

Implementation of an Embedded System for Image Tracking Using Web Camera (ICCAS 2005)

  • Nam, Chul;Ha, Kwan-Yong;;Kim, Hie-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1405-1408
    • /
    • 2005
  • An embedded system has been applied to many fields including households and industrial sites. In the past, user interface products with simple functions were commercialized .but now user demands are increasing and the system has more various applicable fields due to a high penetration rate of the Internet. Therefore, the demand for embedded system is tend to rise In this paper, we Implementation of an embedded system for image tracking. This system is used a fixed IP for the reliable server operation on TCP/IP networks. A real time broadcasting of video image on the internet was developed by using an USB camera on the embedded Linux system. The digital camera is connected at the USB host port of the embedded board. all input images from the video camera is continuously stored as a compressed JPEG file in a directory at the Linux web-server. And each frame image data from web camera is compared for measurement of displacement Vector. That used Block matching algorithm and edge detection algorithm for past speed. And the displacement vector is used at pan/tilt motor control through RS232 serial cable. The embedded board utilized the S3C2410 MPU Which used the ARM 920T core form Samsung. The operating system was ported to embedded Linux kernel and mounted of root file system. And the stored images are sent to the client PC through the web browser. It used the network function of Linux and it developed a program with protocol of the TCP/IP.

  • PDF

Bankruptcy prediction using ensemble SVM model (앙상블 SVM 모형을 이용한 기업 부도 예측)

  • Choi, Ha Na;Lim, Dong Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1113-1125
    • /
    • 2013
  • Corporate bankruptcy prediction has been an important topic in the accounting and finance field for a long time. Several data mining techniques have been used for bankruptcy prediction. However, there are many limits for application to real classification problem with a single model. This study proposes ensemble SVM (support vector machine) model which assembles different SVM models with each different kernel functions. Our ensemble model is made and evaluated by v-fold cross-validation approach. The k top performing models are recruited into the ensemble. The classification is then carried out using the majority voting opinion of the ensemble. In this paper, we investigate the performance of ensemble SVM classifier in terms of accuracy, error rate, sensitivity, specificity, ROC curve, and AUC to compare with single SVM classifiers based on financial ratios dataset and simulation dataset. The results confirmed the advantages of our method: It is robust while providing good performance.

APPLICATION OF SUPPORT VECTOR MACHINE TO THE PREDICTION OF GEO-EFFECTIVE HALO CMES

  • Choi, Seong-Hwan;Moon, Yong-Jae;Vien, Ngo Anh;Park, Young-Deuk
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.2
    • /
    • pp.31-38
    • /
    • 2012
  • In this study we apply Support Vector Machine (SVM) to the prediction of geo-effective halo coronal mass ejections (CMEs). The SVM, which is one of machine learning algorithms, is used for the purpose of classification and regression analysis. We use halo and partial halo CMEs from January 1996 to April 2010 in the SOHO/LASCO CME Catalog for training and prediction. And we also use their associated X-ray flare classes to identify front-side halo CMEs (stronger than B1 class), and the Dst index to determine geo-effective halo CMEs (stronger than -50 nT). The combinations of the speed and the angular width of CMEs, and their associated X-ray classes are used for input features of the SVM. We make an attempt to find the best model by using cross-validation which is processed by changing kernel functions of the SVM and their parameters. As a result we obtain statistical parameters for the best model by using the speed of CME and its associated X-ray flare class as input features of the SVM: Accuracy=0.66, PODy=0.76, PODn=0.49, FAR=0.72, Bias=1.06, CSI=0.59, TSS=0.25. The performance of the statistical parameters by applying the SVM is much better than those from the simple classifications based on constant classifiers.

Handwritten Numeral Recognition using Composite Features and SVM classifier (복합특징과 SVM 분류기를 이용한 필기체 숫자인식)

  • Park, Joong-Jo;Kim, Tae-Woong;Kim, Kyoung-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2761-2768
    • /
    • 2010
  • In this paper, we studied the use of the foreground and background features and SVM classifier to improve the accuracy of offline handwritten numeral recognition. The foreground features are two directional features: directional gradient feature by Kirsch operators and directional stroke feature by projection runlength, and the background feature is concavity feature which is extracted from the convex hull of the numeral, where concavity feature functions as complement to the directional features. During classification of the numeral, these three features are combined to obtain good discrimination power. The efficiency of our feature sets was tested by recognition experiments on the handwritten numeral database CENPARMI, where we used SVM with RBF kernel as a classifier. The experimental results showed that each combination of two or three features gave a better performance than a single feature. This means that each single feature works with a different discriminating power and cooperates with other features to enhance the recognition accuracy. By using the composite feature of the three features, we achieved a recognition rate of 98.90%.

A-priori Comparative Assessment of the Performance of Adjustment Models for Estimation of the Surface Parameters against Modeling Factors (표면 파라미터 계산시 모델링 인자에 따른 조정계산 추정 성능의 사전 비교분석)

  • Seo, Su-Young
    • Spatial Information Research
    • /
    • v.19 no.2
    • /
    • pp.29-36
    • /
    • 2011
  • This study performed quantitative assessment of the performance of adjustment models by a-priori analysis of the statistics of the surface parameter estimates against modeling factors. Lidar, airborne imagery, and SAR imagery have been used to acquire the earth surface elevation, where the shape properties of the surface need to be determined through neighboring observations around target location. In this study, parameters which are selected to be estimated are elevation, slope, second order coefficient. In this study, several factors which are needed to be specified to compose adjustment models are classified into three types: mathematical functions, kernel sizes, and weighting types. Accordingly, a-priori standard deviations of the parameters are computed for varying adjustment models. Then their corresponding confidence regions for both the standard deviation of the estimate and the estimate itself are calculated in association with probability distributions. Thereafter, the resulting confidence regions are compared to each other against the factors constituting the adjustment models and the quantitative performance of adjustment models are ascertained.

Blocking artifacts reduction for improving visual quality of highly compressed images (압축영상의 화질향상을 위한 블록킹 현상 제거에 관한 연구)

  • 이주홍;김민구;정제창;최병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1677-1690
    • /
    • 1997
  • Block-transform coding is one of the most popular approaches for image compression. For example, DCT is widely used in the internaltional standards standards such as MPEG-1, MPEG-2, JPEG, and H.261. In the block-based transform coding, blocking artifacts may appear along block boundaries, and they can cause severe image degradation eqpecially when the transform coefficients are coarsely quantized. In this paper, we propose a new method for blocking artifacts reduction in transform-coded images. For blocking artifacts reduction, we add a correction term, on a block basis, composed of a linear combination of 28 basis images that are orthonormal on block boundaries. We select 28 DCT kernel functions of which boundary values are linearly independent, and Gram-Schmidt process is applied to the boundary values in order to obtain 28 boundary-orthonormal basis images. A threshold of bolock discontinuity is introduced for improvement of visual quality by reducing image blurring. We also investigate the number of basis images needed for efficient blocking artifacts reduction when the compression ratio changes.

  • PDF

KOMPSAT-3A Urban Classification Using Machine Learning Algorithm - Focusing on Yang-jae in Seoul - (기계학습 기법에 따른 KOMPSAT-3A 시가화 영상 분류 - 서울시 양재 지역을 중심으로 -)

  • Youn, Hyoungjin;Jeong, Jongchul
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1567-1577
    • /
    • 2020
  • Urban land cover classification is role in urban planning and management. So, it's important to improve classification accuracy on urban location. In this paper, machine learning model, Support Vector Machine (SVM) and Artificial Neural Network (ANN) are proposed for urban land cover classification based on high resolution satellite imagery (KOMPSAT-3A). Satellite image was trained based on 25 m rectangle grid to create training data, and training models used for classifying test area. During the validation process, we presented confusion matrix for each result with 250 Ground Truth Points (GTP). Of the four SVM kernels and the two activation functions ANN, the SVM Polynomial kernel model had the highest accuracy of 86%. In the process of comparing the SVM and ANN using GTP, the SVM model was more effective than the ANN model for KOMPSAT-3A classification. Among the four classes (building, road, vegetation, and bare-soil), building class showed the lowest classification accuracy due to the shadow caused by the high rise building.

A Library Service Model Toward Ubiquitous City (U-City 구현을 위한 도서관서비스 모델)

  • Chung, Jun-Min
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.20 no.3
    • /
    • pp.163-169
    • /
    • 2009
  • The concept of library is newly interpreted and designed under the environment of U-City. The basic notion of the library should not changed its kernel nevertheless, the new technologies like ubiquitous computing services are applied to the library, which functions in terms of information services, continuous learning programs and communities of practice(CoP). The library is fit for any technologies or environments as organism. Actually the library has been shown in terms of new information technologies with the changes of the times. It leads to comprehend the library as its appearance not as it is. The libraries including even cities have evolved toward ubiquitous(computing) environment. On the other words, the libraries have sought ubiquitous at the past, now they are still chasing it.

Association of heavy metal complex exposure and neurobehavioral function of children

  • Minkeun Kim;Chulyong Park;Joon Sakong;Shinhee Ye;So young Son;Kiook Baek
    • Annals of Occupational and Environmental Medicine
    • /
    • v.35
    • /
    • pp.23.1-23.14
    • /
    • 2023
  • Background: Exposure to heavy metals is a public health concern worldwide. Previous studies on the association between heavy metal exposure and neurobehavioral functions in children have focused on single exposures and clinical manifestations. However, the present study evaluated the effects of heavy metal complex exposure on subclinical neurobehavioral function using a Korean Computerized Neurobehavior Test (KCNT). Methods: Urinary mercury, lead, cadmium analyses as well as symbol digit substitution (SDS) and choice reaction time (CRT) tests of the KCNT were conducted in children aged between 10 and 12 years. Reaction time and urinary heavy metal levels were analyzed using partial correlation, linear regression, Bayesian kernel machine regression (BKMR), the weighted quantile sum (WQS) regression and quantile G-computation analysis. Results: Participants of 203 SDS tests and 198 CRT tests were analyzed, excluding poor cooperation and inappropriate urine sample. Partial correlation analysis revealed no association between neurobehavioral function and exposure to individual heavy metals. The result of multiple linear regression shows significant positive association between urinary lead, mercury, and CRT. BMKR, WQS regression and quantile G-computation analysis showed a statistically significant positive association between complex urinary heavy metal concentrations, especially lead and mercury, and reaction time. Conclusions: Assuming complex exposures, urinary heavy metal concentrations showed a statistically significant positive association with CRT. These results suggest that heavy metal complex exposure during childhood should be evaluated and managed strictly.

The Analysis of Mental Stress using Time-Frequency Analysis of Heart Rate Variability Signal (심박변동 신호의 시-주파수 분석을 이용한 스트레스 분석에 관한 연구)

  • Seong Hong Mo;Lee Joo Sung;Kim Wuon Shik;Lee Hyun Sook;Youn Young Ro;Shin Tae Min
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.581-587
    • /
    • 2004
  • Conventional power spectrum methods based on FFT, AR method are not appropriate for analyzing biomedical signals whose spectral characteristics change rapidly. On the other hand, time-frequency analysis has more desirable characteristics of a time-varying spectrum. In this study, we investigated the spectral components of heart rate variability(HRV) in time-frequency domain using time frequency analysis methods. In the various time-frequency kernels functions, we studied the suitable kernels for the analysis of HRV using synthetic HRV signals. First, we evaluated the time/frequency resolution and cross term reduction of various kernel functions. Then, from the instantaneous frequency, obtained from time-frequency distribution, the method extracting frequency components of HRV was proposed. Subjects were 17 healthy young men. A coin-stacking task was used to induce mental stress. For each subjects, the experiment time was 3 minutes. Electrocardiogram, measured during the experiment, was analyzed after converted to HRV signal. In the results, emotional stress of subjects produced an increase in sympathetic activity. Sympathetic activation was responsible for the significant increase in the LF/HF ratio. Subjects were divided into two groups with task ability. Subjects who have higher mental stress have lack of task ability.