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ABSTRACT

In this study we apply Support Vector Machine (SVM) to the prediction of geo-effective halo coronal
mass ejections (CMEs). The SVM, which is one of machine learning algorithms, is used for the purpose
of classification and regression analysis. We use halo and partial halo CMEs from January 1996 to
April 2010 in the SOHO/LASCO CME Catalog for training and prediction. And we also use their
associated X-ray flare classes to identify front-side halo CMEs (stronger than B1 class), and the Dst
index to determine geo-effective halo CMEs (stronger than -50 nT). The combinations of the speed and
the angular width of CMEs, and their associated X-ray classes are used for input features of the SVM.
We make an attempt to find the best model by using cross-validation which is processed by changing
kernel functions of the SVM and their parameters. As a result we obtain statistical parameters for
the best model by using the speed of CME and its associated X-ray flare class as input features of the
SVM: Accuracy=0.66, PODy=0.76, PODn=0.49, FAR=0.72, Bias=1.06, CSI=0.59, TSS=0.25. The
performance of the statistical parameters by applying the SVM is much better than those from the
simple classifications based on constant classifiers.
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1. INTRODUCTION

Coronal mass ejections (CMEs), which are magne-
tized ejecta from the Sun into the heliosphere, are one
of the strongest solar activities which are geo-effective.
Earthward CMEs interact with the Earth’s magnetic
field and result in geomagnetic storms. There have
been many studies on the relationship between CMEs
and geomagnetic storms; front-side halo CME (Webb
2002; Gopalswamy et al. 2007; Zhang et al. 2007),
the location of CMEs (Kim et al. 2005; Wang et al.
2002), the speed of CMEs (Srivastava & Venkatakrish-
nan 2004), and front-side direction parameter of CMEs
(Moon et al. 2005; Kim et al. 2008).

Machine learning technology has been widely used
in image processing, data classification, and pattern
recognition in order to predict solar activities. Ma-
chine learning can automatically make a model from
data, even in case that they are not clearly understood.
Therefore machine learning technology has been em-
ployed for space weather applications in the following
two aspects: space weather prediction (Al-Omari et
al. 2010; Chen et al. 2010; Colak et al. 2009; Gavr-
ishchaka et al. 2001; He et al. 2008; Li et al. 2007; Liu
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et al. 2011; Olmedo et al. 2005; Qahwaji et al. 2007,
2008; Yuan et al. 2011) and solar feature identification
(Henwood et al. 2010; Labrosse et al. 2010; Quaalude
et al. 2003, 2005; Martens et al. 2009).

In this study, we apply Support Vector Machine
(SVM) to the prediction of geo-effective halo CMEs,
which is the first attempt for the forecast of geomag-
netic storms based on CME data. The SVM is one of
machine learning algorithms, which is to automatically
learn to recognize complex patterns and make intelli-
gent decisions based on data. The speed and the an-
gular width of CMEs, and their associated X-ray flare
classes are used as input parameters for the SVM clas-
sification. In order to verify the SVM performance,
we simply classify the CMEs according to each input
parameter with simple constant classifiers.

This paper is organized as follows. Section 2 de-
scribes the data, the SVM, and statistical verification
methods. In Section 3, we present the results of the
SVM classifications by using cross-validation. And
then we verify the results by comparing them with sim-
ple classifications with constant classifiers. Finally, a
brief summary and conclusion are given in Section 4.
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Table 1.
Data source list

Data Data Center / URL

SOHO/LASCO
CME Catalog

CDAW Data Center
http://cdaw.gsfc.nasa.gov/CME_list/

GOES X-ray Flare NOAA NGDC
http://www.ngdc.noaa.gov/nndc/struts/results?t=102827&&s=25&&d=8,230,9
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_FLARES/FLARES_XRAY/

Dst Index WDC for Geomagnetic in Kyoto
http://wdc.kugi.kyoto-u.ac.jp/dstdir/

Table 2.
The number of CMEs from January 1996 to April 2010

Data Sets Assumption the Number of Data

CMEs in the CME Catalog 15,076

Halo and Partial Halo CMEs with angular width over 120◦ 1,282

Front-side CMEs with X-ray flare from 2 hours ago 733

CMEs for training from 1996 to 2002 627

CMEs for prediction from 2003 to 2010 106

2. DATA AND METHOD

2.1 Data

We use the SOHO/LASCO CME Catalog, the
GOES X-ray flare list, and the Dst index in order to
predict geo-effective halo CMEs. The SOHO/LASCO
CME Catalog is provided by ‘Coordinated Data Anal-
ysis Workshops (CDAW) Data Center’ via HTTP
(http://cdaw.gsfc.nasa.gov/CME_list/). There are
15,076 CMEs from January 1996 to April 2010. We se-
lect 1,282 halo and partial halo CMEs whose angular
widths are larger than 120◦. In the CME catalog, we
use CME appearance time, its angular width, and its
linear speed. And then we extract 733 front-side CMEs
by identifying if they have stronger X-ray flares than
B1 X-ray class within two hours before the initial ap-
pearance times of the halo and partial halo CMEs. The
GOES X-ray flare list is provided by ‘NOAA National
Geophysical Data Center (NGDC)’ via HTTP and
FTP (http://www.ngdc.noaa.gov/nndc/struts/
results?t=102827&s=25&d=8,230,9 and ftp://ftp.
ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_FLARES/
FLARES_XRAY/). From this data set, we use the speeds
and the angular widths of CMEs, and their associated
X-ray flare classes as input parameters.

To determine their geo-effectiveness, we use Dst in-
dex data which are provided by ‘World Data Cen-
ter (WDC) for Geomagnetic in Kyoto’ via HTTP

(http://wdc.kugi.kyoto-u.ac.jp/dstdir/). If Dst
index is less than −50 nT within ± 24 hours from the
CME arrival time based on the empirical CME prop-
agation model (Gopalswamy et al. 2001), we consider
this CME as a geo-effective CME. Fig. 1 summarizes
the method of data selection. Table 1 shows the data
centers and their URLs that provide the used data, and
Table 2 shows the number of CMEs for the present
study from January 1996 to April 2010.

In this paper, we do not use the source location of
CMEs as an input parameter, even though the CME
location is well known as one of important parameters
to predict CME geo-effectiveness (Wang et al. 2002).
There are 487 CMEs with the location information,
which is almost half of the selected CMEs. As a future
study, another model using the CME location would
be developed.

We have developed several program codes to down-
load the data from the data centers, to extract data
records and input parameters, and to apply SVM to
the prediction of geo-effective CMEs by using Python
and C/C++ languages. Python is a general-purpose
and high-level language. It provides open source pro-
grams that can be easily integrated with different plat-
forms and languages. There are libraries like NumPy,
SciPy and Matplotlib to allow Python to be used ef-
fectively in scientific computing. Recently NASA and
ESA initiated the development of SunPy to create an
open source project for solar physics using the Python
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X-ray Flare CME Event CME Arrival Time 

(The empirical CME propagation model) 

Within 2 hours ago Max. Geomagnetic Event within ±24 hours 

Halo or partial halo CMEs : angular width 

Front-side CMEs : X-ray flare  B class (within 2 hours ago) 

Geo-effective CME : Dst  -50 nT (within ± 24 hours at the arrival time) 

Fig. 1.— The method of data selection.
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Fig. 2.— Flow chart of how to use LIBSVM.

language (http://www.sunpy.org).

2.2 Support Vector Machine

The Support Vector Machine (Boser et al. 1992;
Cortes and Vapnik 1995) is one of the supervised
learning methods used for classification and regres-
sion. It is used in many applications like medical im-
age processing, finger print recognition, voice recogni-
tion, data mining and so on. We use LIBSVM (Chang
et al. 2001) as a SVM library, which is widely used
in the field of machine learning. It was developed
via C language and supports many other languages.
The main features of LIBSVM include efficient multi-
class classification, cross-validation for model selection,
probability estimates, various kernels, and weighted
SVM for unbalanced data. Its official website is
http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

It provides three main functions; svm-scale, svm-
train, and svm-predict. First of all, we have to scale
input data sets from −1 to 1 because all data sets have

different ranges. If they have the same data range, we
can generally get a higher accuracy performance. Scal-
ing process can be done by using svm-scale. After scal-
ing we train the scaled data sets and make model data
by svm-train. By using the model data, we can predict
the testing data via svm-predict. The svm-train pro-
duces many different models according to kernel func-
tions of the SVM and their parameters. The kernel
functions of the SVM are for measuring the similarity
of classes. The LIBSVM supports several kernel func-
tions such as linear, polynomial, radial basis function
(RBF), and sigmoid.

We use a grid-search on C and γ using cross-
validation for each kernel function. C > 0 is the
penalty parameter of the error term, and γ means
how much smoother or steeper in a decision bound-
ary. By changing pairs of (C, γ), we pick one pair
with the best cross-validation accuracy. The practical
method to identify good parameters is to try exponen-
tially growing sequences of C (C = 2−5, 2−3, · · · , 215)
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and γ (γ = 2−15, 2−13, · · · , 23). Fig. 2 shows a flow
chart of how to use LIBSVM.

2.3 Statistical Verification Method

In order to compare the results between the SVM
classification and the simple classifications with con-
stant classifiers, we use statistical verification methods
as follows. A contingency table is a matrix format that
displays the frequency distribution of the variables. It
is used to analyze the relation between categorical vari-
ables. Basically there are 2 x 2 grids assigned YES or
NO prediction/observation designations. The number
of events with YES prediction and YES observation is
yy, a YES prediction and a NO observation is yn, and
so on. Table 3 shows the contingency table and its
grids.

Table 4 summarizes several statistical parameters
based on this contingency table. Accuracy is the pre-
diction accuracy that are correctly predicted and ob-
served. PODy and PODn are the proportions of YES
and NO observations that are correctly predicted. FAR
is the proportion of YES predictions that are incorrect.
Bias is the ratio of the number of YES predictions to
the number of YES observations, and is a measure of
over- or under-prediction. Critical Success Index (CSI)
is the proportion of correct YES predictions that are
either prediction or observed. It is also known as the
Threat Score. True Skill Statistic (TSS) is a measure
of the ability of the prediction to discriminate between
YES and NO observations.

3. RESULTS

Scaling and digitizing input features are very impor-
tant for applying the SVM to data. In the case of X-ray
flare class, we assigned 1, 2, 3, and 4 for B, C, M, and
X class, respectively. After that, we scale all the in-
put features from −1 to +1; the speed and the angular
width of CMEs, and their associated X-ray flare classes.
We separate front-side halo and partial halo CMEs into
two data sets. One is for training from 1996 to 2002
and the other is for testing from 2003 to 2010.

As mentioned before, we use the LIBSVM as a SVM
library. To optimize the performance of the SVM, we
need to determine the kernel functions and their pa-
rameters empirically. In this paper we use several ker-
nel functions such as polynomial, radial basis function,
and sigmoid in order to select the best kernel. We also
change input features that are every combination of
the speed and the angular width of the CME, and its
associated X-ray flare class. For the application with
each combination, we compute the statistical parame-
ters such as accuracy, PODy, PODn, FAR, bias, CSI,
and TSS. For each kernel, we run 110 trials by chang-
ing kernel parameters (C and γ) and then list the best
result based on cross-validation in Table 5.

Among 18 results in Table 5, SX (the combination
of speed and X-ray flare class) and kernel 2 (RBF) is
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Fig. 3.— Statistical parameters of the classification based
on CME speed.
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Fig. 4.— Statistical parameters of the classification based
on CME angular width.

the best model in terms of the prediction accuracy. It
produces the best prediction accuracy of 0.66 as well
as the best PODy of 0.76. And the other statisti-
cal parameters are PODn=0.49, FAR=0.72, Bias=1.06,
CSI=0.59, and TSS=0.25. Generally the RBF is the
most popular choice of kernel functions used in the
SVM. This is mainly because of their localized and fi-
nite responses across the entire range of the real data
set. It also produces the best model in this data set.

In order to verify the SVM performance, we sim-
ply classify the CMEs according to each input feature
with constant classifiers. First, we classify the CMEs
based on CME speed from 100 to 1,600 km s−1 with
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Table 3.
Contingency table for evaluation of prediction

Observation

YES NO Total

YES yy yn yy + yn

Prediction NO ny nn ny + nn

Total yy + ny yn + nn yy+yn+ny+nn

Table 4.
Statistical verification parameters

Statistical Parameter Description Definition

Accuracy Prediction Accuracy (yy + nn)/total

PODy Probability of Detection of Yes observations yy/(yy + ny)

PODn Probability of Detection of No observations nn/(yn + nn)

FAR False Alarm Ratio yn/(yy + yn)

CSI Critical Success Index yy/(yy + ny + yn)

Bias Prediction Bias (yy + yn)/(yy + ny)

TSS True Skill Statistic PODy + PODn − 1

total = yy + yn + ny + nn
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Fig. 5.— Statistical parameters of the classification based
on X-ray flare class.

the step of 50 km s−1. Fig. 3 shows the the statistical
result of the CME speed classification. If we consider
only the prediction accuracy, we can not always take
meaningful results. As we can see in Fig. 3, it has a
very poor performance in other statistical parameters

although it has a better result in the accuracy. So we
consider PODy as another important statistical param-
eter along with the prediction accuracy. In this work
we select the best model which have the best accu-
racy among the cases with PODy over 0.7. In the case
of 500 km s−1 classifier, the statistical parameters are
Accuracy=0.53, PODy=0.73, PODn=0.39, FAR=0.55,
Bias=1.63, CSI=0.39, and TSS=0.12. Second, we clas-
sify the CMEs based on CME angular width from 120◦

to 360◦ with the step of 10◦. Fig. 4 shows the the statis-
tical result of the CME angular width classification. In
the case of 160◦ classifier, the statistical parameters are
Accuracy=0.56, PODy=0.73, PODn=0.43, FAR=0.53,
Bias=1.57, CSI=0.40, and TSS=0.17. Third, we clas-
sify CMEs based on the X-ray flare class associated
with the CME; B, C, M and X. Fig. 5 shows the the
statistical result of the X-ray class classification. In the
case of C class classifier, the statistical parameters are
Accuracy=0.46, PODy=0.90, PODn=0.16, FAR=0.58,
Bias=2.14, CSI=0.40, and TSS=0.06.

Table 6 shows the comparison of the results among
the SVM classification and the simple classifications.
In the case of the SVM classification, most of the im-
portant statistical parameters such as Accuracy, CSI,
and TSS are all better than those of other classifica-
tions. In the case of X-ray class, it has the best PODy
but its other statistical parameters are very poor.

In previous study, the classification with CME lo-
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Table 5.
CME Classifications of the SVM by using cross-validation

Input Kernel c g yy yn ny nn Accuracy PODy PODn FAR Bias CSI TSS

1 -5 +3 22 23 45 16 0.36 0.33 0.41 0.49 0.67 0.24 -0.26

S 2 +11 -13 29 24 38 15 0.42 0.43 0.38 0.55 0.79 0.32 -0.18

3 -1 +3 28 10 39 29 0.54 0.42 0.74 0.74 0.57 0.36 0.16

1 -3 -7 41 15 26 24 0.61 0.61 0.62 0.73 0.84 0.50 0.23

W 2 +7 +3 0 1 67 38 0.36 0.00 0.97 0.00 0.01 0.00 -0.03

3 -5 -15 0 0 67 39 0.37 0.00 1.00 9.99 0.00 0.00 0.00

1 -3 -7 25 5 42 34 0.56 0.37 0.87 0.83 0.45 0.35 0.24

SW 2 +15 +1 2 1 65 38 0.38 0.03 0.97 0.67 0.04 0.03 0.00

3 -1 +3 6 6 61 33 0.37 0.09 0.85 0.50 0.18 0.08 -0.06

1 -3 -7 46 18 21 21 0.63 0.69 0.54 0.72 0.96 0.54 0.23

SX 2 -5 -15 51 20 16 19 0.66 0.76 0.49 0.72 1.06 0.59 0.25

3 +9 -1 15 4 52 35 0.47 0.22 0.90 0.79 0.28 0.21 0.12

1 -5 -7 31 10 36 29 0.37 0.46 0.74 0.76 0.61 0.40 0.21

WX 2 +7 -3 21 11 46 28 0.46 0.31 0.72 0.66 0.48 0.27 0.03

3 +13 -3 18 9 49 30 0.45 0.27 0.77 0.67 0.40 0.24 0.04

1 -1 -9 31 10 36 29 0.57 0.46 0.74 0.76 0.61 0.40 0.21

SWX 2 +11 -5 21 11 46 28 0.46 0.31 0.72 0.66 0.48 0.27 0.03

3 +7 -3 15 6 52 33 0.45 0.22 0.85 0.71 0.31 0.21 0.07

Input (Input Features) : S (Speed), W (Angular Width), X (X-ray Flare Class)

Kernel (Kernel Functions) : 1 (Polynomial), 2 (RBF, Radial Bias Function), 3 (Sigmoid)

Kernel Parameters : c(C = 2c), g(γ = 2g)

Table 6.
Comparison of the results among the SVM classification and the simple classifications

Classifier Accuracy PODy PODn FAR Bias CSI TSS

Speed(≥ 500 km s−1) 0.53 0.73 0.39 0.55 1.64 0.39 0.12

Width (≥ 160◦) 0.56 0.73 0.43 0.53 1.57 0.40 0.17

X-ray class (≥ B) 0.46 0.90 0.16 0.58 2.15 0.40 0.06

SVM (RBF) 0.66 0.76 0.49 0.72 1.06 0.59 0.25
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cations and speeds showed PODy=0.64, PODn=0.68,
FAR=0.43, Bias=1.13, and CSI=0.43 (Kim et al.
2005). When comparing these values, we found that
the PODn and FAR of the SVM result are slightly
lower, but PODy, Bias and CSI are significantly im-
proved.

4. SUMMARY AND CONCLUSION

In this work we have applied the SVM to the pre-
diction of geo-effective halo CMEs. For this we used
halo and partial halo CMEs from January 1996 to April
2010 in the SOHO/LASCO CME Catalog. And we also
used X-ray classes of their associated flares to identify
front-side halo CMEs (stronger than B1 class), and
the Dst index to determine geo-effective halo CMEs
(stronger than −50 nT). All the combinations of the
speed and the angular width of CME, and its asso-
ciated X-ray class are used for input features for the
SVM classification. Since the SVM produces many
models according to the kernel functions and their pa-
rameters, we have found the best model by using the
cross-validation. We consider the PODy along with
the prediction accuracy as an important statistical pa-
rameter. To demonstrate the SVM performance, we
compare it with the simple classifications with constant
classifiers. The performances of the statistical param-
eters by applying the SVM are much better than those
from the simple classifications between geo-effective
and non-geo-effective CMEs. By using CME speed
and X-ray flare class as input features of the SVM, we
have obtained statistical parameters for the best model:
Accuracy=0.66, PODy=0.76, PODn=0.49, FAR=0.72,
Bias=1.06, CSI=0.59, and TSS=0.25.

In recent times, the needs of machine learning are
growing because it can deal with large amount of data
from space missions. For example, automated systems
using machine learning algorithms have been devel-
oped for the solar dynamics observatory (SDO) mis-
sion (Martens et al. 2009; Attrill et al. 2010). From the
present study together with the previous ones, the most
important advantage of the SVM for space weather
forecast is that we can select the best model among
many possible models by changing various kernels and
their parameters. Our results can be used for the space
weather applications. The developed codes can be inte-
grated to an automatic prediction system if CME speed
and width are automatically determined (e.g., CAC-
TUS) and GOES X-ray data are provided in near-real
time. In addition, such an application can be extended
to other space weather forecasts such as solar flare fore-
cast and solar proton event forecast.
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