• Title/Summary/Keyword: kernel distribution estimation

검색결과 79건 처리시간 0.026초

On Estimating the Hazard Rate for Samples from Weighted Distributions

  • Ahmad, Ibrahim A.
    • International Journal of Reliability and Applications
    • /
    • 제1권2호
    • /
    • pp.133-143
    • /
    • 2000
  • Data from weighted distributions appear, among other situations, when some of the data are missing or are damaged, a case that is important in reliability and life testing. The kernel method for hazard rate estimation is discussed for these data where the basic large sample properties are given. As a by product, the basic properties of the kernel estimate of the distribution function for data from weighted distribution are presented.

  • PDF

오차분포 유클리드 거리 기반 학습법의 커널 사이즈 적응 (Adaptive Kernel Estimation for Learning Algorithms based on Euclidean Distance between Error Distributions)

  • 김남용
    • 한국산학기술학회논문지
    • /
    • 제22권5호
    • /
    • pp.561-566
    • /
    • 2021
  • 오차분포 추정을 위한 커널 사이즈는 오차확률밀도 사이의 유클리드 거리를 최소화 알고리즘의 가중치 갱신에 적합한 커널 사이즈가 될 수 없다. 이 논문에서는 MED 알고리즘의 수렴 성능 향상을 위해 적응적으로 커널 사이즈를 갱신하는 방법을 제안하였다. 제안한 방식은 MED 학습 알고리즘의 가중치 갱신을 위해 커널 사이즈에 대한 오차분산의 평균변화율을 도입하여 MED의 오차에 대한 평균전력이 감소하는 방향으로 커널 사이즈를 조절하도록 하였다. 제안된 적응 커널 추정법을 무선통신 채널의 왜곡 보상에 적용하여 학습 성능을 실험하고 그 효능을 밝혔다. 오차분산에 비례한 작은 값을 가지는 기존의 오차분포 추정 위한 최적 커널 사이즈와 달리, 제안한 방법에 의한 커널 사이즈는 MED 가중치 수렴을 위한 적절한 커널 사이즈로 수렴함을 보였다. 실험 결과로부터 제안한 방법이 MED 알고리즘의 커널 사이즈 설정에 따른 민감성을 크게 해결한 방법이라고 볼 수 있다.

ROC 함수 추정 (ROC Function Estimation)

  • 홍종선;;홍선우
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.987-994
    • /
    • 2011
  • 모집단이 부도와 정상상태로 구분되는 신용평가 관점에서 부도와 정상 상태의 조건부 누적분포함수를 추정하는 방법으로 정규혼합 분포추정과 kernel density estimation을 이용하는 분포추정을 고려한다. 정규혼합 분포의 모수를 EM 알고리즘을 사용해 추정하고, KDE 방법에서는 많이 사용하는 다섯 종류의 커널 함수와 네가지의 띠폭을 이용한다. 그리고 추정한 분포로부터 구한 각각의 ROC 함수를 구한다. 추정한 분포들의 적합도를 비교 분석하고, 이를 바탕으로 구한 ROC 곡선의 성과를 비교 토론한다. 본 연구에서는 KDE 방법으로 추정한 분포함수가 더 적합하고, 추정한 정규혼합 분포를 이용한 ROC 함수가 더 좋은 성과를 나타내는 것을 발견하였다.

변환(變換)을 이용(利用)한 커널함수추정추정법(函數推定推定法) (Transformation in Kernel Density Estimation)

  • 석경하
    • Journal of the Korean Data and Information Science Society
    • /
    • 제3권1호
    • /
    • pp.17-24
    • /
    • 1992
  • The problem of estimating symmetric probability density with high kurtosis is considered. Such densities are often estimated poorly by a global bandwidth kernel estimation since good estimation of the peak of the distribution leads to unsatisfactory estimation of the tails and vice versa. In this paper, we propose a transformation technique before using a global bandwidth kernel estimator. Performance of density estimator based on proposed transformation is investigated through simulation study. It is observed that our method offers a substantial improvement for the densities with high kurtosis. However, its performance is a little worse than that of ordinary kernel estimator in the situation where the kurtosis is not high.

  • PDF

Estimating multiplicative competitive interaction model using kernel machine technique

  • Shim, Joo-Yong;Kim, Mal-Suk;Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권4호
    • /
    • pp.825-832
    • /
    • 2012
  • We propose a novel way of forecasting the market shares of several brands simultaneously in a multiplicative competitive interaction model, which uses kernel regression technique incorporated with kernel machine technique applied in support vector machines and other machine learning techniques. Traditionally, the estimations of the market share attraction model are performed via a maximum likelihood estimation procedure under the assumption that the data are drawn from a normal distribution. The proposed method is shown to be a good candidate for forecasting method of the market share attraction model when normal distribution is not assumed. We apply the proposed method to forecast the market shares of 4 Korean car brands simultaneously and represent better performances than maximum likelihood estimation procedure.

Kernel Inference on the Inverse Weibull Distribution

  • Maswadah, M.
    • Communications for Statistical Applications and Methods
    • /
    • 제13권3호
    • /
    • pp.503-512
    • /
    • 2006
  • In this paper, the Inverse Weibull distribution parameters have been estimated using a new estimation technique based on the non-parametric kernel density function that introduced as an alternative and reliable technique for estimation in life testing models. This technique will require bootstrapping from a set of sample observations for constructing the density functions of pivotal quantities and thus the confidence intervals for the distribution parameters. The performances of this technique have been studied comparing to the conditional inference on the basis of the mean lengths and the covering percentage of the confidence intervals, via Monte Carlo simulations. The simulation results indicated the robustness of the proposed method that yield reasonably accurate inferences even with fewer bootstrap replications and it is easy to be used than the conditional approach. Finally, a numerical example is given to illustrate the densities and the inferential methods developed in this paper.

On Practical Efficiency of Locally Parametric Nonparametric Density Estimation Based on Local Likelihood Function

  • Kang, Kee-Hoon;Han, Jung-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.607-617
    • /
    • 2003
  • This paper offers a practical comparison of efficiency between local likelihood approach and conventional kernel approach in density estimation. The local likelihood estimation procedure maximizes a kernel smoothed log-likelihood function with respect to a polynomial approximation of the log likelihood function. We use two types of data driven bandwidths for each method and compare the mean integrated squares for several densities. Numerical results reveal that local log-linear approach with simple plug-in bandwidth shows better performance comparing to the standard kernel approach in heavy tailed distribution. For normal mixture density cases, standard kernel estimator with the bandwidth in Sheather and Jones(1991) dominates the others in moderately large sample size.

Estimation of Non-Gaussian Probability Density by Dynamic Bayesian Networks

  • Cho, Hyun-C.;Fadali, Sami M.;Lee, Kwon-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.408-413
    • /
    • 2005
  • A new methodology for discrete non-Gaussian probability density estimation is investigated in this paper based on a dynamic Bayesian network (DBN) and kernel functions. The estimator consists of a DBN in which the transition distribution is represented with kernel functions. The estimator parameters are determined through a recursive learning algorithm according to the maximum likelihood (ML) scheme. A discrete-type Poisson distribution is generated in a simulation experiment to evaluate the proposed method. In addition, an unknown probability density generated by nonlinear transformation of a Poisson random variable is simulated. Computer simulations numerically demonstrate that the method successfully estimates the unknown probability distribution function (PDF).

  • PDF

A STUDY ON KERNEL ESTIMATION OF A SMOOTH DISTRIBUTION FUNCTION ON CENSORED DATA

  • Jee, Eun Sook
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제31권2호
    • /
    • pp.133-140
    • /
    • 1992
  • The problem of estimating a smooth distribution function F at a point $\tau$ based on randomly right censored data is treated under certain smoothness conditions on F . The asymptotic performance of a certain class of kernel estimators is compared to that of the Kap lan-Meier estimator of F($\tau$). It is shown that the .elative deficiency of the Kaplan-Meier estimate. of F($\tau$) with respect to the appropriately chosen kernel type estimate. tends to infinity as the sample size n increases to infinity. Strong uniform consistency and the weak convergence of the normalized process are also proved.

  • PDF