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LIL FOR KERNEL ESTIMATOR OF ERROR DISTRIBUTION
IN REGRESSION MODEL

S1-Li N1u

ABSTRACT. This paper considers the problem of estimating the error dis-
tribution function in nonparametric regression models. Sufficient condi-
tions are given under which the kernel estimator of the error distribution
function based on nonparametric residuals satisfies the law of iterated
logarithm.

1. Introduction

In nonparametric regression models, the main focus in statistical literature
over the last five decades has been the estimation of the regression function.
Relatively little is known about the estimation of the error distribution func-
tions in these models. It is often of interest and of practical importance to know
the nature of the error distribution after estimating a regression function. The
focus of this paper is to investigate the law of iterated logarithm (LIL) of the
kernel estimator of distribution function (d.f.) based on nonparametric residu-
als.

In parametric regression and autoregressive models several authors have
studied these estimators. The weak convergence of the empirical processes
based on residuals in parametric regression models is discussed in Koul [5, 6,
8, 9], Loynes [11], Portnoy [14], and Mammen [12], while Boldin [1], Koul [7],
and Koul and Osiander [10] discuss this for parametric autoregressive mod-
els. The uniform consistency of error density in these models is discussed in
Koul {8] in linear regression and autoregression models. Cheng [2] considered
the consistency of the histogram error density function and the empirical error
distribution estimation in nonparametric regression.

2. Model and estimators

In this section, we introduce the model, the error d.f. estimators. Accord-
ingly, let X and Y be one-dimensional random variables, with X taking values
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in [0,1]. In the regression model, we are concerned with here one observes n in-
dependent identically distributed (i.i.d.) copies (X;,Y;);1 < ¢ < n from (X,Y),
such that for some real valued function m(z), z € [0, 1],

=Y, —m(X;),i=12,...,n

are i.i.d. random variables with an unknown d.f. G and density g. We further
assume that E(e|X) = 0, a.s., so that m(z) = E(Y|X = z), where € is a copy of
€1. Let my(x) denote the well-known Nadaraya [13] kernel regression estimator:

_ iz YiL((z = Xi) /)
EEDER(CEp OV

where h,, denotes the bandwidth sequence of positive numbers tending to zero,
and L is the kernel density function.

mp(x) , ¢ €][0,1],

Let /e\i:: Y; —mn(X;), i =1,2,... denote the nonparametric residuals and
let a, be another sequence of positive numbers tending to zero. The kernel
density and distribution function estimators based on these residuals are given
by, respectively

Tn (t):_l_Zk(%)z i/w k(E1Yd G ()

Nan =1 n an J_ o an

and

where K(z) = [*_k(t)dt, k(-) is kernel density function and

n

Cn (1) = - I(&i< 1),

i=1

Denote dy,(z) := mnp(z) — m(z),z € [0,1]. Under some conditions, Hardle
et al. [4] have shown that there exists a constant C' > 0 such that

(2.1) sup |dn(z)| < Cy/logn/nh,, all large n, a.s.

z€[0,1]

Cheng [2] discussed that under some conditions,

(2.2) sup |dn(z)| = vOp(\/logn/nhn) as n — 0o,

z€[0,1]

where

(2.3) hn — 0 and +/logn/nh, — 0.
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Based on the assumptions of (2.2), (2.3) and (2.1), (2.3), respectively, Cheng [2]

A A
investigated the convergence rates of Gy, () and consistency of g, (z), where

A 1 < A
9y (z) = e ;I(aj —a, << T+ a,))

1 A A
= ﬁ[G" (+an)— Gn (z —an)], z€R.
Motived by (2.1), we give the following assumptions on dy(z):
(A1) supgepq) ldn(z)| = O(Bn) a.s. n — oo, where 0 < 3, — 0.

Remark 2.1. By (A.1), we know that there exists a constant ¢y > 0 such that
SUD,¢(0,1] [dn(2)] < coBn a.s. for all large n. Define R,, = {sup,¢(o 1] |dn ()| <
cofn}. Then P(N2, R;) — 1.

In this paper, based on the assumption (A.1), we discuss the LIL of Chung-
Smirnov’s type up-limit, Kolmogorov-Smirnov’s and Cramer-Von Mises’s type
down-limit of Gr, (z).

The rest of this paper is organized as follows. Section 3 gives main results
and the proofs of main results are provided in section 4.

In the following section, all limits are taken as the sample size n tends to
00, unless specified otherwise. C and c will represent positive constants whose
value may change from one place to another.

3. Main results

In this section, let A > 0 and [ > 0, assume that G is Lipschitz continuous
of order A, (A.1) is fulfilled, and that k(-) is a probability density function with
S [t E()dt < oo,

Theorem 3.1. Let (n/loglogn)/2a} — 0 and (log 3;*)/loglogn — co.
(1) If (n/loglogn)'/23) — 0, then
2n

(3.4) lim sup(
n—oo loglogn

)2 sgp| Gn ()= G(@) =1 as.

(2) If g is Lipschitz continuous of order I and (n/loglogn)'/285 — 0, then
(3.4) remains true.

Theorem 3.2. Let (n/loglogn)'/?a} — 0 and (log 3;*)/loglogn — occ.
(1) If (n/loglogn)'/?3} — 0, then

(35)  limsup( 172 /R (G (2) — G@)2dC(@)]Y2 = 7" as.

n—oo 2loglogn

(2) If g is Lipschitz continuous of order | and (n/loglogn)'/2851 — 0, then
(3.5) remains true.
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Theorem 3.3. Let (nloglogn)'/2a;) — 0 and (log 8;*)/ loglogn — oo.
(1) If (nloglogn)}/28) — 0, then
(3.6) linn_l)ioléf(nlog logn)/2 sup | Gn (z) — G(z)| = 87?1 a.s.
(2) If g is Lipschitz continuous of order I and (nloglogn)t/28k1 — 0, then
(3.6) remains true.
Theorem 3.4. Let n'/?(loglogn)®/2a) — 0 and (log 8;*)/ loglogn — oo.
(1) If (nloglogn)*/28) — 0, then
(3.7 hgr_l»gf(n log logn)1/2[/R(5n (z) — G(x))2dG(z)]/? =871/2 q.s.

(2) If g is Lipschitz continuous of order | and (nloglogn)/284! — 0, then
(3.7) remains true.

4. Proof of main results

In this section, set Gn(z) := ;30 K(22%) and Fy(z) =

o). anlt) = VA(E(t)=0) t € 0.1), Eult) = L S, 10 <0, 0,

n'

Proof of Theorem 3.1. We write

(48)  Gn (2) ~ G(z) = [Gn () — Gu(x)] + [Galz) — G(2)).
Thus, it suffices to show that

4.9 li
(4.9) I,Igl_,solip( log log n

)12 up|G (z) = Gn(z)| = 0 a.s.
and

4.10 Ii
( ) lin_ilip(log logn

We first prove (4.9). By [, k(u)du = 1, we have
(4.11)  sup| Gn (x) — Gn(x)f

)/2sup|Gn(a) ~ Gla)| =1 as.

= sup | /R k(u)[é\,‘n (x — uan) — Fp(z — uay)]dul

< sup| G (@) = Fu(a)
< sup—lZ (e <z +dn(X3)) — Gz + dn(Xi)) — I(e; < z) + G(2)]]
+sup—|z (& + dn(Xy)) — G(2)]]

= I+ Ing.
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By Remark 2.1, we need only to consider (4.9) on R,,. Using the monotonicity
of G, we see that on R,

Inz < sup[G(z + cofn) — Gz — coBn)]-

Since G is Lipschitz continuous of order A, I.2 < O(3}).
If g is Lipschitz continuous of order I, then

cofBn
I, < sup/ gz + u)du

z —cofBn

T

cofBn cofn
< sup[/o 9z + ) — g(a)ldu + / 9@ — ) — g(a)|du]

< o) / 0 = O
= 0 n °

Note that, on R, for any z € R, by the monotonicity of the function I and G,
we have
1 n
- Z[I(ei <2 +dn (X)) — Gl + dn(X3)) — I(e; < z) + G(2)]
i=1

n

% Z[I(Ei <&+ coBn) — Gz + cobn) — I(e; < z) + G(2)]

-{—[G(Z‘ + Coﬁn) - G(-T - COﬂn)]
= 1 (an(Gz + coBn)) — an(G())] + [z + cofin) — Glz — coffn)]

and similarly, we also obtain that

IN

% ;[I(Q < 24 dn(X0)) — Gz + dn(Xy)) — I(e; < 2) + G(@)]
> 07 an(Glz — cobn)) — on(G(@)] - [G(@ + cofin) = Gz = cofn)].
Thus,
Iy < ni/2 max{st;p lon(Glz + coBn)) — an(G(2))],
sup |lan(G(z — coffn)) — an(G(2))[}
(4.12) + slip[G(x + ¢oBn) — Gz — cof3n)]-
Now, we verify that, for H € R,
sup lan(G(z + HBp)) — an(G(2))]
(4.13) = O(n"Y%log? n) + O((B) log B, M)'/?).

In fact, since log 3;*/ loglogn — oo, by Theorem 4.4.3 and Theorem 1.15.2 of
Csorgd and Révész [3], there exists a Kiefer process {K(y,t),0 <y < 1,0 <



840 SI-LI NIU

t < oo} such that
sup |an(G(z + HpBn)) — an(G(2))| < sup |an(t) — an(s)|
z [t—s|<CB)

< sup Jan(t) - n V2K (tn)[+ sup  o(s) — n V2K (s,n)]
[t—s|<CB2 [t—s|<CBp

+n~Y2 sup |K(s,n) — K(t,n)]|
[t~s|<CB

= O(n™'?log’ n) + O((B) log B;)'/2),

here applying |G(z + HB,) — G(z)| < CB;. Therefore, (4.13) is proved. Hence,
by (4.11)-(4.13), we prove (4.9) from the proof for I, and assumptions.
Next, we prove (4.10). We observe that

Gn(z) - G(2) n(t) - G(z)

/R [Fale = any) — Fa(@)]k(y)dy + [Fa(z) - G(a)]
(4.14) = Li(z) + La(z).

By Theorem 5.1.1 of Cs6rgo and Révész [3], we have

4.15 Ii
( ) lﬂso‘ip(log logn

W2sup |Ly(x)) =1 a.s.

Hence, to prove (4.10), it suffices to show that

(4.16) liﬁsolip(log lOgn)l/2 sgp]Ll(x)[ =0 as.
Note that
sl @) < 02| [ [an(Glo ~ an) — an(Gla) Ky
+au| [ (6@ - an) - GGy
< n2aw] [ lon(Gle - ) - anlG) Iy

12 up| / [on(G(z — any)) — an(G (@) k(y)dy]

4012 gup| / Glx — any)) ~ an(G()))k(y)dyl

+0(a}) /R W k(y)dy

= n_1/2(L11 + L12 + L13) + O(aﬁ)v
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where M, = loglogn. By (4.15) and [}, |y|*k(y)dy < oo, we obtain that

lim sup(loglogn) /2Ly,
n—0o0

IA

2 lim sup(log log n) ~/2 sup|an(G(:1:))1/ k(y)dy
T M,

n—o0

IA

n—oo

Similarly, limsup,,_,. . (loglogn)~'/2L;3 =0, a.s.

841

2limsup(n/ loglogn)/2 M * sup | F,,(z) — G(z)| / Y E(y)dy =0 a.s.
z R

Note that (n/loglogn)'/2a} — 0, so a, = (n/loglogn)~'/?*C,,, where

Cpn — 0, and hence log(M,a,)~!/loglogn — oo. Using (4.13), we have

L1z < sup sup |an(G(z — any)) — an(G(2))]
z  |y|<Mp

= O(nY%log?n) + O((Mpay log(Mpan)~)Y?) a.s.

Since Mpnanlog(Mpa,)™! — 0, limsup,_,. (loglogn)~/2L;; = 0, a.s. So,

(4.16) is verified. Therefore, Theorem 3.1 is proved.
Proof of Theorem 3.2. We observe that

[ /R (G (2) — G(2))2dG ()]

< [/R(a‘n (&) — Gn())dG(2)]*? + [/R(Gn(w) - G(2))*dG(2))?
< sup|Gn (2) = Gula)| + [/R(Gn(aﬁ - G(x))*dG(2))"?

and

[ /R (G (2) — G(2))?dC(x)] 2

417 > [/R(Gn(w) - G(2))*dG(2))'* ~ sup | Gn (@) = Gu(a)|.

Therefore, it suffices to show that

(4.18)  limsup(n/2loglogn)'/? [/R(Gn(x) — G(x))2dCG(@)V2 =771 as.

and
(4.19) limsup(n/2loglog n)/2 sup | G (z) — Ga(z)] =0 a.s.
Clearly, (4.19) holds from (4.9).

Next, we prove (4.18). We obtain from (4.14) that

/R (Ga(z) - G(2))*dC(a)
- /R [2(2)dG(z) + 2 /R L1(2)La(2)dG(z) + /R L3(2)dG(z).

O
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Hence, to prove (4.18), it suffices to show that

(4.20) limsup(n/210glogn)1/2[/ L2 (2)dG (@)Y =71 a.s.
n—oo R

(4.21) lim sup(n/ loglogn)lﬂ[/ L3z2)dG@)]Y?* =0 a.s.
n—o0 R

(4.22) limsup(n/loglogn)|/ Li(z)L2(z)dG(z)] =0 a.s.
n—oo R

By using the Theorem 5.1.3 of Cs6rgd and Révész [3], (4.20) is obtained. (4.16)
implies (4.21). As to (4.22), we obtain from (4.20) and (4.21) that

NAMMM@MMI
2 13@ac()

1 _n N1/2 2 1/2
lgﬁnm%g[émwmml

= 0 a.s.

n

li
lﬂsiip( loglogn

< I
- lfl_,sip(loglogn

Proof of Theorem 3.3. By (4.8), it suffices to show that

(4.23) limsup(n loglog n)'/2 sup | Gn (z) — Gn(z)| =0 a.s.
and
(4.24) liminf(nloglogn)/?sup |G, (z) — G(z)| = 8 /%1 a.s.

By assumptions, similar to the arguments in (4.9), we can verify (4.23).
Note that (see (4.14)) Gp(z) — G(z) = L1(x) + La(z). By Theorem 5.1.7 of
Csorg6 and Révész (3], we have

1/2

(4.25) lim inf(n loglogn)'/2 sup |Ly(x)| = 871 a.s.

Similar to the arguments for (4.16) and taking M, = (loglogn)?/*, we can
verify that

(4.26) limsup(nloglogn)/?sup |Li(z)| =0 a.s.
Hence, (4.24) is proved from (4.25) and (4.26). O

Proof of Theorem 3.4. Similar to the proof in Theorem 3.2, it suffices to show
that

(427)  liminf(nloglogn)!/?( /R (Gn(@) — G(2))2dG(2)]V/2 = 8112 .5,



LIL FOR KERNEL ESTIMATOR 843

and

(4.28) lim sup(n log log n)'/2 sup | Gn (x) = Gplz)| =0 a.s.

n—oo

As the proof for (4.9), we can verify (4.28).

To prove (4.27), similar to the proof for (4.18), we need only to prove the
following three equations:

(4.29) liminf(nloglogn)lm[/ Li(z)dG(z))V/? =812 q.s.
n—oo R

(4.30) limsupnl/Q(loglogn)?’/Q[/ L¥(z)dG(z)]Y? =0 a.s.
n->00 R

(4.31) limsup(nloglogn)|/ Li(xz)L2(z)dG(z)| =0 a.s.
n-—00 R

By using the Theorem 5.1.7 of Csérg6 and Révész [3], (4.29) is obtained.
Taking M,, = (loglogn)3/*, similar to the arguments for (4.16), we can
verify that (4.30).
As to (4.31), applying (4.30) and Theorem 5.1.1 of Csorgd and Révész [3]
(also see (4.15)), we have

n—od

limsup(nloglogn)|/RLl(:c)LQ(:v)dG(:c)l

IN

lim sup n/2(log log n)3/? [/ L3(2)dG(x)]M/?
n—oo R
-lim sup(n/ log log n)!/?

n—oo

= 0 a.s.

sup | Ls(x)]

O
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