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A STUDY ON KERNEL ESTIMATION OF A SMOOTH
DISTRIBUTION FUNCTION ON CENSORED DATA

EuN Sock JEE

ABSTRACT

The problem of estimating a smooth distribution function F at a point 7 based on randomly
right censored data is treated under certain smoothness conditions on ¥ . The asymptotic
performance of a certain class of kernel estimators is compared to that of the Kap lan-Meier
estimator of F(r). It is shown that the relative deficiency of the Kaplan-Meier estimator of
F(7) with respect to the appropriately chosen kernel type estimator tends to infinity as the
sample size n increases to infinity. Strong uniform consistency and the weak convergence of the
normalized process are also proved.

1. INTRODUCTION

Let Xy,---,X, and Yj,---,Y, be independently and identically distributed random vari-
ables with distribution functions F and G respectively. Let F=1—F and G = 1—G denote the
corresponding survival functions. Define Z; = X; AY; ,6 =1 X; <Yiand =0if X; > Y},
for i = 1,--- ,n, where A denotes the minimum. Let H(-) = p(Z < -) denote the distribution
function of Z. It is easy to show that 1 — H = H = FG. The most well known estimator of F
based on (Z1,61), -+ ,(Zn,8,) is the Kaplan-Meier (1958) estimator. In recent years there has
been a great deal of work on the large sample properties of this estimator. These large sample
properties hold under very general conditions. However in some situations it may be assumed
that F' has a density, say,f . In such situations one would like to construct an estimator which
is differentiable a.e. In the case of no censoring, this problem has been studied by Reiss(1981),
Yamato(1972), Winter(1973, 1979), Azzalini(1981), Singh et al. (1983), Hill(1985), Falk(1983)
and Mammitzsch(1984). Reiss(1981) has shown that a properly chosen kernel estimator is bet-
ter than the usual empirical estimator with respect to relative deficiency. In this paper we
define a smooth estimator of F based on a kernel function and the Kaplan-Meier estimator.
The leading term of the mean square error of the proposed estimator at a fixed point 7 is
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calculated. Using this leading term it is shown that the relative deficiency of the Kaplan-Meier
estimate tends to infinity as the sample size n increases to infinity. Uniform strong consistency

and the weak convergence of the standardized process on a finite interval are also proved.
Based on the randomly censored data, a kernel estimator of the density f can be defined as

f,,(‘r) = /e;lK((r —z/en) dF‘KM(z)

where K(-) is a kernel function and Fy is the Kaplan-Meier estimate defined as

1 - Frpm(r) = ]._I[__..1 f;.ﬁ.zzl.)]ojl(stf)
3j 2

where

n
N*(-)=_I(z; > 0) and I(A) indicator of the setA

j=1

Based on the estimator f, an estimator of F can be defined as
mm=/'&@a
—o0
The estimator F,, can also be expressed as
Futr) = [ K((r = y)/en dFrnty)
= [ e K((r = /e dFrm(e) dy

where

K(z)= /_;K(u)du

Define ﬁ'KM =1~ Fgm, Tr = Sup{t|F(t) > 0}

Te = Sup{t|G(t) > 0} and g (z) = I** derivative of g

(1-1)

(1-2)

(1-3)

(1-4)

(1-5)

(1-6)

(1-7)
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In the following section it will be assumed that the kernel K belongs to a class of kernels,
K, of all Borel measurable bounded functions on the real line with the following properties

(i)/K(z)dz: 1,
(ii)/z‘K(:c)dx:O, fori=1.---, m and

(11) My = / |z|™* | K (z)]dz < oo

2. UNiForRM CONSISTENCY AND WEAK CONVERGENCE

In this section uniform strong consistency results with rates and the weak convergence of the
process {/n(F, — F)jz < T < Tr} to the Gaussian process are proved.

Theorem 2.1. Define T,, = sup{t|H(t) > 6 (loglogn/(2n))'/?}. Suppose
(k€ Ky, m >0,

(#) lim eP*t(n/loglogn)t/? =0, and
(i%i)either sup|f™(z)| < 00 or /[f("‘)(:c)l < oo

Then

lim(sup|Fy — F|/F(T,)) < % / k@)|dt as

Corollary 2.1. Suppose the kernel K is a density satisfying the conditions of Theorem 2.1.

Then

lim(sup| £n — FI/F(Th)) < % as

proof of Theorem 2.1. Define

Fo(z) = /e,‘,lk((:c ~y)/ea)F(y)dy and

B(F,) = Fa(z) — F(x) (2-1)
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Then
suplFu(2) = Fa(2)| < suplFxm(z) - F(2)] / K (t))dt (2-2)
and B(F\(z)) = / K@)(F(z — ht) — F(2))dt (2-3)

Now using Taylor’s expansion with remainder term in derivative form (2.3) can be expressed
as

B = [ K@E P (e )i (2-4)
< Elsupl ) [ kol (2-5)
= et M 415up| f0™) (2-6)

On the other hand using Taylor’s expansion with the integral form of the remainder, (2.3)
can also be bounded as

B @) =1 [ KO [ P -0 dudt (-
< ep M [ 11wl (2-8)

Hence it follows from (2.6) and (2.8) that if sup|f(™)| < oo or if

f™ €Ly suplB(Fa())] = O(em*) (2-9)

Hence
sup|F — F| < sup|Fn — F| + sup|B(F,)| (2-10)
< sup|Fie — F| / K ()] + O(e+) (2-11)

This together with condition (ii) of Theorem 2.1 imply that

lim(sup|Fy ~ F|/F(T,)) < lim sup|Fxas — F|/F(Ty) / K (8)ldt a.s

<% / K ()dt, (2-12)
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where the second inequality follows from Theorem 1in Cs8rgd and Horvath (1983). This
completes the proof. O
We now establish the weak convergence of the process {\/n(n(z) — F(z)lz < Yr} Recall that

Fo(z) = F(2) = In(2) + B(Fa(2)) (2-13)
where F(z) — Fo(z) = I.(2) (2-14)

and F,(z) and B(F,(z)) are defined in (2.1) and (2.3) respectively.
Since B(Fy,(z)) is non-stochastic it is enough to show that

() Vnsup|B(Fu(z))| = 0 asn = oo and

(#8) {V/nI.(z)]z < T} converges weakly to a zero mean Gaussian process.
The next lemma establishes the tightness of the process. Throughout assume that
K@) =0 if Jt|>1 (2-15)
Lemma 2.1. if\/n€¢2 —-0asn — o0 then

(i) P(Vnlp(—0) > €e) < n, foralln > 1
(%) for everye > 0 and n > 0, thereexist a 6,0 < 6 < 1, and an ngy such that

P( sup  /njla(z)—I—n(y)|>¢€) <n for all n > ng, and
le—yl<bz,y<T

(i#i) {Vn(Fa(z) = F(2))lz < T} is tight

proof. Let n be large enough so that H(71) > 0 with 7} > Y + &, in the details to follow.
Let 9(6) = {(z,y)|z,y < Th,|z — y| < 6} Since In(~o0) =0 for all n , (i) follows trivially.
To show (ii) first recall that

In(z) = / K()(Fia(z — ent) — F(z — ent)) dt (2-16)

Now observe that for every ¢ >00< 6 < 1, e*||k|ly =¢, and ||k}, = [|k()}dt,

P{ sup  n|l(z) - I.(y)| > ¢}
lz—y|<6;7,y<T

<{  sup |Va(Fxu(z) = F(2) - Va(Fru(y) - F(y)| > €'}
le=y|<8z.y<T, (2-17)
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Let {W(z) : z < T1} denote a mean zero Gaussian process with the same covariance function
as the Kaplan-Meier process. For given ¢ and 75 , choose § = é(¢,n), 0 < § < 1, such that

P(sup{|W(z) - W(y)| : (z,y) € B(6)} 2 €7) < -g— (2-18)

Now fix this § and choose ng such that

P{ sup |Vn(Fxm(z)=- F(z)) = vVa(Fxm(y) - Fy)| > €'} <n (2-19)
(,9)€8(5)

for all n < ng
Observe thatny depends only on 7 and é . Hence it follows from (2-17) and (2-19) that

P{VasuplI(z) — In(v)! : (2,5) € $(6)} > €} < 7 for alln > ng

This completes the proof of (ii).
To show (iii), observe that

gupﬁlB(Fn(x))| <O(VneMt!) =0 form=1

Since F,(-) is continuous, (i) and (ii) of this lemma together imply (iii) (see Theorem 8.2 in
Billingsley 1968). This completes the proof of the lemma. O

In order to show that the finite dimensional distributions of the process /n(F, —F') converge
to the appropriate multivariate normal distributions we will use the following representation of
the Kaplan-Meier process due to Gardiner and Susarla (1983).

Theorem 2.2. Assuming F to be continuous one can write

Fxm(e) - F(z) = %if(z.-,é.-,zHrn(z), (2-20)

where
€(2,6,T) = F()lo(at) - (B(1)1(2,6), (2-21)
o) = [ (EE)*CF (2-22)

sup|rp(t)| = Op(n'l/z) (2-23)
fSTI
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Theorem 2.3. Assume that f(™) is integrable for m >1. Thenfort; < - <t <T
p ~
Y LVA(Fat;) - F(t)) = N@Q,IY D) if /el —0 as n— oo
i=1
where l' = (Iy,--- ;) and Y = (o(t;,t;)),

o(ti, ;) = F(ta)ﬁ(tj)/O‘Wj(ﬁ("))'zdﬁl(u),dﬁl = GdF (2-249)

proof. The proof follows from the representation given in the previous theorem and the central
limit theorem. The following theorem now follows from the Lemma 2.1 and Theorem 2.3. O

Theorem 2.4. Let o(z,y) be as defined in (2.24). If /ne™ — Oasn — oo and |f(™)|is
integrable for some positive integer m > 1, then

{(Vn(Fa(z) — F(z)) : 2 < T} — {W(z) : 2 < T}
where W () is a zero mean Gaussian process with covariance function o(z,y).
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