• Title/Summary/Keyword: kNN분류기

Search Result 90, Processing Time 0.03 seconds

Film Line Scratch Detection using a Neural Network based Texture Classifier (신경망 기반의 텍스처 분류기를 이용한 스크래치 검출)

  • Kim, Kyung-Tai;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.26-33
    • /
    • 2006
  • Film restoration is to detect the location and extent of defected regions from a given movie film, and if present, to reconstruct the lost information of each region. It has gained increasing attention by many researchers, to support multimedia service of high quality. In general, an old film is degraded by dust, scratch, flick, and so on. Among these, the most frequent degradation is the scratch. So far techniques for the scratch restoration have been developed, but they have limited applicability when dealing with all kinds of scratches. To fully support the automatic scratch restoration, the system should be developed that can detect all kinds of scratches from a given frame of old films. This paper presents a neurual network (NN)-based texture classifier that automatically detect all kinds of scratches from frames in old films. To facilitate the detection of various scratch sizes, we use a pyramid of images generated from original frames by having the resolution at three levels. The image at each level is scanned by the NN-based classifier, which divides the input image into scratch regions and non-scratch regions. Then, to reduce the computational cost, the NN-based classifier is only applied to the edge pixels. To assess the validity of the proposed method, the experiments have been performed on old films and animations with all kinds of scratches, then the results show the effectiveness of the proposed method.

Malware Detection Method using Opcode and windows API Calls (Opcode와 Windows API를 사용한 멀웨어 탐지)

  • Ahn, Tae-Hyun;Oh, Sang-Jin;Kwon, Young-Man
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.11-17
    • /
    • 2017
  • We proposed malware detection method, which use the feature vector that consist of Opcode(operation code) and Windows API Calls extracted from executable files. And, we implemented our feature vector and measured the performance of it by using Bernoulli Naïve Bayes and K-Nearest Neighbor classifier. In experimental result, when using the K-NN classifier with the proposed method, we obtain 95.21% malware detection accuracy. It was better than existing methods using only either Opcode or Windows API Calls.

Evaluation on the usefulness of Representative Keyword Extraction from Few Documents through Fuzzy Inference (퍼지 추론을 이용한 소수 문서의 대표 키워드 추출에 대한 유용성 평가)

  • 노순억;김병만;신윤식;임은기
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.247-249
    • /
    • 2002
  • 본 논문은 퍼지 추론을 이용하여 소수문서로부터의 대표 용어들을 추출하고 가중치를 부여한 기존 방법의 유용성을 평가하고자 GIS (Generalized Instance Set) 알고리즘에 이를 적용시켜 보았다. GIS 는 학습 문서 집합에 대한 플러스터링 과정을 통해 문서 그룹들을 생성하고 이들에 대한 선형 분류기들을 유도한 뒤 k-NN 알고리즘을 적용하는 방법이다. GIS의 일반화(generalization) 과정에 Rocchio, Widrow-Hoff 및 퍼지 추론을 이용한 방법을 적용시켜 문서 분류 성능을 비교하였다. 긍정적 문서 집합에 대한 실험에서 비교적 우수한 성능 향상을 보여줌으로써 퍼지 추론을 이용한 방법의 유용성을 확인 할 수 있었다.

  • PDF

Threatening privacy by identifying appliances and the pattern of the usage from electric signal data (스마트 기기 환경에서 전력 신호 분석을 통한 프라이버시 침해 위협)

  • Cho, Jae yeon;Yoon, Ji Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.1001-1009
    • /
    • 2015
  • In Smart Grid, smart meter sends our electric signal data to the main server of power supply in real-time. However, the more efficient the management of power loads become, the more likely the user's pattern of usage leaks. This paper points out the threat of privacy and the need of security measures in smart device environment by showing that it's possible to identify the appliances and the specific usage patterns of users from the smart meter's data. Learning algorithm PCA is used to reduce the dimension of the feature space and k-NN Classifier to infer appliances and states of them. Accuracy is validated with 10-fold Cross Validation.

Classification Protein Subcellular Locations Using n-Gram Features (단백질 서열의 n-Gram 자질을 이용한 세포내 위치 예측)

  • Kim, Jinsuk
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.12-16
    • /
    • 2007
  • The function of a protein is closely co-related with its subcellular location(s). Given a protein sequence, therefore, how to determine its subcellular location is a vitally important problem. We have developed a new prediction method for protein subcellular location(s), which is based on n-gram feature extraction and k-nearest neighbor (kNN) classification algorithm. It classifies a protein sequence to one or more subcellular compartments based on the locations of top k sequences which show the highest similarity weights against the input sequence. The similarity weight is a kind of similarity measure which is determined by comparing n-gram features between two sequences. Currently our method extract penta-grams as features of protein sequences, computes scores of the potential localization site(s) using kNN algorithm, and finally presents the locations and their associated scores. We constructed a large-scale data set of protein sequences with known subcellular locations from the SWISS-PROT database. This data set contains 51,885 entries with one or more known subcellular locations. Our method show very high prediction precision of about 93% for this data set, and compared with other method, it also showed comparable prediction improvement for a test collection used in a previous work.

  • PDF

Design of a Pattern Classifier for Pain Awareness using Electrocardiogram (심전도를 이용한 통증자각 패턴분류기 설계)

  • Lim, Hyunjun;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.9
    • /
    • pp.1509-1518
    • /
    • 2017
  • Although several methods have been used to assess the pain levels, few practical methods for classifying presence or absence of the pain using pattern classifiers have been suggested. The aim of this study is to design an pattern classifier that classifies the presence or absence of the pain using electrocardiogram (ECG). We measured the ECG signal from 10 subjects with the painless state and the pain state(Induced by mechanical stimulation). The 10 features of heart rate variability (HRV) were extracted from ECG - MeanRRI, SDNN, rMSSD, NN50, pNN50 in the time domain; VLF, LF, HF, Total Power, LF/HF in the frequency domain; and we used the features as input vector of the pattern classifier's artificial neural network (ANN) / support vector machine (SVM) for classifying the presence or absence of the pain. The study results showed that the classifiers using ANN / SVM could classify the presence or absence of the pain with accuracies of 81.58% / 81.84%. The proposed classifiers can be applied to the objective assessment of pain level.

Induction Motor Diagnosis System by Effective Frequency Selection and Linear Discriminant Analysis (유효 주파수 선택과 선형판별분석기법을 이용한 유도전동기 고장진단 시스템)

  • Lee, Dae-Jong;Cho, Jae-Hoon;Yun, Jong-Hwan;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.380-387
    • /
    • 2010
  • For the fault diagnosis of three-phase induction motors, we propose a diagnosis algorithm based on mutual information and linear discriminant analysis (LDA). The experimental unit consists of machinery module for induction motor drive and data acquisition module to obtain the fault signal. As the first step for diagnosis procedure, DFT is performed to transform the acquired current signal into frequency domain. And then, frequency components are selected according to discriminate order calculated by mutual information As the next step, feature extraction is performed by LDA, and then diagnosis is evaluated by k-NN classifier. The results to verify the usability of the proposed algorithm showed better performance than various conventional methods.

Fault Diagnosis for the Nuclear PWR Steam Generator Using Neural Network (신경회로망을 이용한 원전 PWR 증기발생기의 고장진단)

  • Lee, In-Soo;Yoo, Chul-Jong;Kim, Kyung-Youn
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.673-681
    • /
    • 2005
  • As it is the most important to make sure security and reliability for nuclear Power Plant, it's considered the most crucial issues to develop a fault detective and diagnostic system in spite of multiple hardware redundancy in itself. To develop an algorithm for a fault diagnosis in the nuclear PWR steam generator, this paper proposes a method based on ART2(adaptive resonance theory 2) neural network that senses and classifies troubles occurred in the system. The fault diagnosis system consists of fault detective part to sense occurred troubles, parameter estimation part to identify changed system parameters and fault classification part to understand types of troubles occurred. The fault classification part Is composed of a fault classifier that uses ART2 neural network. The Performance of the proposed fault diagnosis a18orithm was corroborated by applying in the steam generator.

International Patent Classificaton Using Latent Semantic Indexing (잠재 의미 색인 기법을 이용한 국제 특허 분류)

  • Jin, Hoon-Tae
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1294-1297
    • /
    • 2013
  • 본 논문은 기계학습을 통하여 특허문서를 국제 특허 분류(IPC) 기준에 따라 자동으로 분류하는 시스템에 관한 연구로 잠재 의미 색인 기법을 이용하여 분류의 성능을 높일 수 있는 방법을 제안하기 위한 연구이다. 종래 특허문서에 관한 IPC 자동 분류에 관한 연구가 단어 매칭 방식의 색인 기법에 의존해서 이루어진바가 있으나, 현대 기술용어의 발생 속도와 다양성 등을 고려할 때 특허문서들 간의 관련성을 분석하는데 있어서는 단어 자체의 빈도 보다는 용어의 개념에 의한 접근이 보다 효과적일 것이라 판단하여 잠재 의미 색인(LSI) 기법에 의한 분류에 관한 연구를 하게 된 것이다. 실험은 단어 매칭 방식의 색인 기법의 대표적인 자질선택 방법인 정보획득량(IG)과 카이제곱 통계량(CHI)을 이용했을 때의 성능과 잠재 의미 색인 방법을 이용했을 때의 성능을 SVM, kNN 및 Naive Bayes 분류기를 사용하여 분석하고, 그중 가장 성능이 우수하게 나오는 SVM을 사용하여 잠재 의미 색인에서 명사가 해당 용어의 개념적 의미 구조를 구축하는데 기여하는 정도가 어느 정도인지 평가함과 아울러, LSI 기법 이용시 최적의 성능을 나타내는 특이값의 범위를 실험을 통해 비교 분석 하였다. 분석결과 LSI 기법이 단어 매칭 기법(IG, CHI)에 비해 우수한 성능을 보였으며, SVM, Naive Bayes 분류기는 단어 매칭 기법에서는 비슷한 수준을 보였으나, LSI 기법에서는 SVM의 성능이 월등이 우수한 것으로 나왔다. 또한, SVM은 LSI 기법에서 약 3%의 성능 향상을 보였지만 Naive Bayes는 오히려 20%의 성능 저하를 보였다. LSI 기법에서 명사가 잠재적 의미 구조에 미치는 영향은 모든 단어들을 내용어로 한 경우 보다 약 10% 더 향상된 결과를 보여주었고, 특이값의 범위에 따른 성능 분석에 있어서는 30% 수준에 Rank 되는 범위에서 가장 높은 성능의 결과가 나왔다.

A Comparative Study on Similarity Measure Techniques for Cross-Project Defect Prediction (교차 프로젝트 결함 예측을 위한 유사도 측정 기법 비교 연구)

  • Ryu, Duksan;Baik, Jongmoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.6
    • /
    • pp.205-220
    • /
    • 2018
  • Software defect prediction is helpful for allocating valuable project resources effectively for software quality assurance activities thanks to focusing on the identified fault-prone modules. If historical data collected within a company is sufficient, a Within-Project Defect Prediction (WPDP) can be utilized for accurate fault-prone module prediction. In case a company does not maintain historical data, it may be helpful to build a classifier towards predicting comprehensible fault prediction based on Cross-Project Defect Prediction (CPDP). Since CPDP employs different project data collected from other organization to build a classifier, the main obstacle to build an accurate classifier is that distributions between source and target projects are not similar. To address the problem, because it is crucial to identify effective similarity measure techniques to obtain high performance for CPDP, In this paper, we aim to identify them. We compare various similarity measure techniques. The effectiveness of similarity weights calculated by those similarity measure techniques are evaluated. The results are verified using the statistical significance test and the effect size test. The results show k-Nearest Neighbor (k-NN), LOcal Correlation Integral (LOCI), and Range methods are the top three performers. The experimental results show that predictive performances using the three methods are comparable to those of WPDP.