The Journal of The Institute of Internet, Broadcasting and Communication (IIBC)
Vol. 17, No. 6, pp.11=17, Dec. 31, 2017. pISSN 2289-0238, elSSN 2289-0246

https://doi.org/10.7236/J1IBC.2017.17.6.11
JIBC 2017-6-2

Opcode®} Windows APIE AH&SH H4jo] €3

Malware Detection Method using Opcode and windows API Calls

* * %

NI, Hyet

O

QFEN

rel

3

Tae-Hyun Ahn’, Sang-Jin Oh’, Young-Man Kwon

e oF X o Heo] &% WE o R Opcode (operation code 9} A oA F%3F Windows API Call
2 A" 54 WEE AMEsE UHS] sl WA PE gdollA F&3 opcodest Windows APIZ £ HEE
T3k Bernoulli Naive Bayes?} K-Nearest Neighbor £77] ¢ig]5S AFEsle] 4 7yzy Z2Askch Ag

O E bl

A3}, At @k KNN #77]18 AHgste] 25shd 95.21%9] delo] & As 15% g F YAtk AgHow
719 Opcode = Windows APL 3% 5 skl AME3ske iRt} Aokeh wiHo] Ao} &

A5E Bt

Abstract We proposed malware detection method, which use the feature vector that consist of Opcode(operation
code) and Windows API Calls extracted from executable files. And, we implemented our feature vector and
measured the performance of it by using Bernoulli Naive Bayes and K-Nearest Neighbor classifier. In experimental
result, when using the K-NN classifier with the proposed method, we obtain 95.21% malware detection accuracy. It
was better than existing methods using only either Opcode or Windows API Calls.

Key Words : Malware, PE File Format, Opcode, Windows API Calls, Machine Learning, Bernoulli Naive Bayes,
K-Nearest Neighbor.

| . INTRODUCTION malware, there are many difficulties in detecting and

analyzing malware. There is a classical and popular

The term “Malware” stands for malicious software, way to detect malware, which is signature based

and it usually means the hostile software application. method™. Signature was extracted manually from large

The malware can be discriminated by the capability of ~ number malware sample data by heuristic-based

replication, propagation, self-execution and corruption analysis. However, this signature-based detection

of the operating system”. According to McAfee's methods have several disadvantages and require high
latest report, the large number of new samples for the maintenance costs to continue signature updates.

malware are being distributed every day". Recently, many research efforts has been reported

Because of the large number of samples for new on data mining techniques'”. These methods use the

34, SAWEw o 21T Received: 28 September, 2017 / Revised: 28 October, 2017 /
TENE A, SA Y o RITE (A A AL Accepted: 8 December, 2017

HedAl 20179 9Y 28Y, =45 2017 10€ 28 "Corresponding Author: ymkwon@eulji.ac.kr

AAEG LA 20173 12€ 8 Dept. of Medical IT, Eulji University, Korea

11 -

Malware Detection Method using Opcode and windows API Calls

many kind of feature extraction methods and data
mining algorithms. In this paper, we used Opcode and
Windows APl Calls as the feature vector. And we
apply Naive Bayes (NB) and K-Nearest Neighbor
(K-NN) algorithms for usefulness of our feature
vector. As a result, we get the better result than the
existing features that is used by same algorithms.

Il. RELATED WORK

Malware detection methods can be divided by Static
Analysis and Dynamic Analysis. Static analysis is the
testing and evaluation of an application by examining
the code without executing the application. So in this
method, the performance of detection depends on
feature vectors of files. On the other hand, dynamic
analysis is the testing and evaluation of an application
while virtual

environment. It reveals subtle defects or vulnerabilities

executing the program in the
whose cause is too complex to be discovered by static
analysis[a. In this paper, We used Static Analysis, that
i1s automated-behavior based malware detection using
machine learning algorithm.

1. PE File Format

The PE (Portable Executable) file format is an
executable file format such as EXE, DLL, Object code
used in the Windows operating system. PE files were
created by Microsoft based on the COFF (Common
Object File Format), and transferred to PE file format
along with the introduction of the 3.1 operating system
on Windows NT. In the PE file format, the PE header
consists of DOS Header, DOS Stub, NT Header,
Section Header, and the section below it is PE body.

The section data of the PE body part is divided into
ordinary code (text), data (.data), and resource (.rsrc)
sections and saved”. The overall PE file format is
shown in figure 1. For execution, the PE file is loaded
(or mapped) in memory and the section including code

and data of the executable file has different shapes

such as size and position on the process of loading.
That is, the PE file format is distinguished from the file

and memory format.

Offaet VA

e (00000000 Q1000000 ==

00000040 000040

Q00000E0 Q000050

PE PE

0000MDE aw0a0a
Section Section
Header” text) Header” text)
OO0 A0
Section Section
Hesde(dasta) Hesder(" dsta)
00000228 21000228
Section Section

Header{" rurc”) Header{" rwc”)

Q1001000

Section Datal” text)

Section Datal" text”)

2003000 PE
Section Datal" ruc?)

L o

Section
Datal” dana’)

01008000

01012000

3% 1, PEOIY A
Fig. 1. PE file format

2. Feature vectors

There are several kinds of feature vectors for the
file to detect malware. These used Opcode, Windows
API Calls, byte sequence and Header etc” In Santos
etc. al. m, they used a frequency of the appearance of
opcode sequences. Alazab etc. al. B introduced the
method of classifying whether or not the executable file
is malware by using the n—gram statistical analysis of
the binary contents. And, they used the Support Vector
Machine (SVM) classifier with n—gram that was varied
from 1 to 5. Alazab etc. al. " had proposed and
evaluated a novel method of employing several data
mining techniques to detect and classify zero-day
malware with high levels of accuracy and efficiency
based on the frequency of Windows API Calls.

12 -

The Journal of The Institute of Internet, Broadcasting and Communication (IIBC)
Vol. 17, No. 6, pp.11=17, Dec. 31, 2017. pISSN 2289-0238, elSSN 2289-0246

ISHORT 904810F7 kernel32.ReadFile

%) kernel32 .VirtualProtect
80402000 kernel32.CreateDirectoryA
00402086 USER32.DispatchMessageh

2 USER32.DefWindowProcA
<IMP.&USER32.MessageBoxA> USER32.CreateWindowExA
<IMP.&KERNEL32.ExitProcess> USER32.EndDialog

pe40121D USER32.EndPaint

(a) Opcode (b) Windows API Calls
a8 2. £ HES

Fig. 2. Feature Vectors

The Opcode is a core part of a machine instruction
that embodies an operator executed by a machine and
provides functions of logical operation, program flow
control, memory processing, and arithmetic operationuOJ.
The Opcode is shown in figure 2 (a). In the Windows
API Calls, API stands for Application Programming
Interface. This is functions provided by the operating
system, programming language and etc. so that it can
be used in applications. For example, The Windows
API functions consist of over 1000 functions that can
create Windows and can opening a files. These APIs
was implemented in several program modules or
routines that already exist or need to be connected to
conduct the tasks requested by a function calls", API
Calls is shown in figure 2 (b).

3. Classifier

To detect malware, someone use classifier as
addressed in the above (feature vector). Another use
study for
. The purpose of this paper is to design the

clustering method in existing
detection™”

feature vector and verify the efficiency of it. So, we

spam

will simply use the existing classifier, especially
BernoulliNB and K-Nearest Neighbor classifier that is
implemented in scikit-learn.

The classification is a data mining (machine
learning) technique used to predict group membership
for data instances. The Naive Bayes algorithm is based
on Bayes’ theorem. It is as follows.

plejw) = pwle;) < ple;)/p(w)
Where conditional probability p (ci|w) is posterior
probability about belong in which classes when feature

vector w of data was given. Also, p(w|ci) 1S prior

probabhility, p(cl-) is probabhility of class, and p(w) is
probability of feature vector. When there are several
features, joint probability should be computed, but it
have many difficulties. The Naive Bayes is that each of
features is assumed to be independent of each other.
Then, prior probability is simply computed by the
following.

p(wle;) = pwgle;) X plwle;) X< p(w)le;)

In this paper, we use Bernoulli Naive Bayes use
there are two classes (malware or benign). Bernoulli
Naive Bayes implements learning for data that is
distributed according to Bernoulli distributions.

K-Nearest Neighbor is based on instance learning.
This Algorithm classify whether the software is
malware or not by majority decision after searching k
instances of nearest neighbors. Therefore in this case,
it is important to set the appropriate the number of
instance as value of k.

ll. MPLEMENTATION OF THE
PROPOSED SYSTEM

As mentioned above we proposed feature vector as
opcode and Windows API calls to detect malware. So
we verified the efficiency of the feature vector. The
overall algorithm of detecting malware is divided by
two steps, extracting feature vector in the file and
classifying the file as malware or benign. We used
classifier in scikit-lean(Bernoulli Naive Bayes, K-NN).

In order to extract features from the PE file format
(exe, dll, etc.), we used the ‘pefile’ module ™. At first,
we extract opcode by using ‘capstone’ module U6 that
disassembles the machine code. The second, we find
Windows API calls goal by using ‘pefile’ import library
module. The overall procedure is described in figure 3
and the detailed procedure is as follows.

Step 1: We find the code section by using ‘pefile’
module. Then we extract it and feed it into ‘capstone’
module. It is hex code format.

Step 2: Disassembler, the ‘capstone’ module, convert

13 -

Malware Detection Method using Opcode and windows API Calls

the hex code into the assembly language as showed in
figure 3. When using ‘capstone’, we should use it after
checking whether the OS environment of PE file is
32-bits or 64-hits.

i PE file : Sample4exe;

Step 1 .
capstone pefile
Step 2
Ta0T069 push 07c0000000
0240106e pusn 0:402079
0%401073 call 0x401283 = === —f—=—m— | KERELE dII

02401078
02401070

* oword ptr [0xa03270]
np cwerd pir
[RFE] o dvord ptr [0%

PUSH | Caeea0ee

i PUSH | 08402079

Op;ode CALL <JMP.8KERNEL32.CreateFileAs — /> Windows API Calls
(N ._._._ EAX, -1
JNZ| SHORT @e4e1e9A

a3 3. 53 £3 8%

Fig. 3. Feature Extraction Flowchart

Step 31 We extract Opcode such as push, cmp, jnz,
etc. from assembly language. After this steps, we can
get the Opcode as feature. In this step, we excluded call
function because it is used to extract Windows API call
function. This is explained in step 5.

Step 4: As preprocessing step before step 5, we
created the sorted list that consist of DLL's name and
the address of FirstThunk from IMAGE_IMPORT_
DESCRIPTOR. For example, we can know information
such as FirstThunk of Kernel32.dll is 0x3258(shown in
figure 3). Where the FirstThunk of IAT reveals the
start of RVA for the imported API functions. Also, we
prepare the Import Address Table (IAT) as dictionary
in order to extract individual Windows API call
function.

Step 5 In this step, we look for Windows API
Functions of all opcode ‘call’ by using the sorted list
and IAT dictionary created in the 4 step. For example,
opcode ‘call’ at the address ‘0x401073 has ‘0x401283' as
value of operand. And by using this value of operand,

we searched new value of address. Because value of

operand indicates new value of address. The operand of
new address is ‘jmp dword ptr [0x403274]. And we
subtract ImageBase ‘0x400000’ from RVA ‘0x403274'. In
the result, we obtain ‘0x3274". To get the FirstThunk of
DLL table involve '0x3274', we get the values of
FirstThunk smaller than ‘0x3274" and get the value of
FirstThunk which has the largest value among the
obtained values through sorted FirstThunks in the step
4. The value of FirstThunk eventually obtained is
‘0x3258. And we calculate position of Windows API
function using the dictionary of imported Windows API
functions created in step 4. In the process of
calculating, subtract FirstThunk ‘0x3258 from the
‘0x3274'. Because FirstThunk is
composed by dword, we divide the difference into 4. As

obtained value

a result, we could obtain a value of 7, which means that
it is positioned 8 th. Eventually Windows API function
indicated by the ‘call at address ‘Ox401073 is
CreateFileA of kernel32.dll.

IV. EXPERIMENT AND RESULT

In this paper, we prepared 1224 files as dataset for
experiment. Among that, the 445 files are benign and
extracted from the Windows file directory (windows
\system32). In that directory, we exclude the files with
non-PE file format. We crawled 779 malware files from
the Web sites of "Virusshare!”” and "malwareurls.
joxeankoretm]”, ”malcOdem]”, "malwareblacklist™” and
used it for learning. Malware consists of Trojan 418,
PUP 176, Virus 58 Backdoor 34, Adware 29,
Downloader 21, Spyware 13, and so on.

Classifier used Bernoulli Naive Bayes and
K-Nearest Neighbor. In the case of Bernoulli NB, we
set value of alpha to 05, where the alpha is
hyperparameter used in smoothing of maximum
likelihood. In the case of K-NN, we used k =2, because
performance is highest when k is 2 of 2-5. And, we
used Euclidean metric to compute distance between the

instances. Also, to measure performance, we used

- 14 -

The Journal of The Institute of Internet, Broadcasting and Communication (IIBC)
Vol. 17, No. 6, pp.11=17, Dec. 31, 2017. pISSN 2289-0238, elSSN 2289-0246

accuracy, true positive rate and false positive rate.

Experimental results are shown in the table 1.
TPR(True Positive Rate) is probability of correctly
identified malware. Also, FPR(False Positive Rate) is
probability of wrongly identified benign, when a
detector identifies benign as a malware. For example,
in a medical perspective, TPR is the probability that we
accurately diagnosed that cancer patient is suffering
from a cancer. On the other hand, FPR is the
probability of diagnosing that a person who does not
have cancer is suffering from cancer. If FPR is very
high, it can diagnose that everyone has cancer.
Therefore, in order to obtain reliable results, the TPR
must be high and the FPR must be low.

To obtain reliable results, the seed of two classifiers
used in the experiment was set to 0 — 10 and each
value of result was obtained. And, The average of

these results was obtained, which shown as table 1.

1. 2F HAE Znt

Table 1. Result of Classification test

N K-Nearest
Feature | Bernoulli Naive Bayes Neighbor(k=2)
Extraction -
TPR FPR ACC | TPR FPR ACC
Opcode |0.812314 0.096553 0.844368]0.944919 0.0378% 0.951087

Windows
API 1.00000 0.184692 0.93330 J0.752503 0.120117 0.797183
Calls

Proposed

0.86601 0.086759 0.832905]0.9650263 0.044760 0.952075
method

In the results, when we use Bernoulli Naive Bayes
and the feature vector is set to windows API calls, it
shows the highest accuracy of 93.33%. However, since
FPR of Bernoulli Naive Bayes is the highest, the
probability of identifying benign as malware is high.
Overall, when looking at the accuracy of all classifier,
the accuracy of the proposed method is the highest in
case of K-NN was used. The result of the proposed
method was that TPR is about 95.03%, FPR is about
4.48%, and the accuracy is about 95.21%. The method
we proposed could have the highest accuracy results
when using the K-NN classifier than the Naive Bayes
classifier. They followed figure 4.

Malware detection rate by Bermoulli Naive Bayes
100 &
= Cpcode
- AP+ Opcode

=

e for ace
Malware detection rate by K-Nearest Neighborlk=2)

100 BF

Opcode
AP+ Opents

o [ace
1% 4. 2571E Zeo] ©X| HIg MY
Fig. 4. Malware Detection Rate by Classifier

V. Conclusion

In this paper, we proposed method that classify
whether unknown executable file is malware or not.
The method used feature vectors of Opcode and
Windows API Calls extracted from executable file and
got the better performance than existing methods. One
disadvantage is that it takes a long training time
because of the high dimension. Therefore, in the future,
we need to study feature selection to reduce dimension.

Also, In this paper, we used two classifiers such as
Bernoulli Naive Bayes, K-Nearest Neighbor, but future
studies should derive better results through more

diverse classifiers.

References

[1] G. Bala Krishna, V. Radha, K. Venugopala Rao,
“Review of Contemporary Literature on Machine
Learning based Malware Analysis and Detection
Strategies,” Global Journal of Computer Science

and Technology, vol. 16, Issue. 5, version 1.0, pp

- 15 -

Malware Detection Method using Opcode and windows API Calls

11-16, 2016.

[2] B. Kolosnjaji, A. Zarras, G. Webster, C. Eckert,
“Deep Learning for Classification of Malware
System Call sequences,” in Australasian Joint
Conference on Artificial Intelligence, pp 137-149,
2016.

[3] Z. Bu et al, McAfee Threats Report: Second
Quarter 2012, McAfee Labs, 2012.

[4] Ye, Yanfang, et al. "A Survey on Malware
Detection Using Data Mining Techniques,” ACM
Computing Surveys (CSUR) vol.50,n0.3, 41p, 2017.
DOL: http://doi.org/10.1145/3073559

[5] analysis method, https://software.intel.com/

[6] Seung-Won Lee, Reversing Important Principles:
Malware analyst’'s reversing talk, Insight, pp
141-143, 2012.

[71 I Santos, F. Brezo, X. Ugarte—Pedrero, PG.
Bringas, “Opcode Sequences as Representation of
Executables for data—mining-based unknown
malware detection,” Information Sciences, vol. 231,
pp. 64-82, 2013,

DOL http://doi.org/10.1016/].ins.2011.08.020

[8] M. Alazab, R. Layton, S. Venkataraman, P.
Watters, “Malware detection based on structural
and behavioural features of api calls”, School of
Computer and Information Science, Security
Research Centre, Edith Cowan University, Perth,
Western Australia, 2010.

[9] M. Alazab, S. Venkatraman, P. Watters, M.
Alazab, “Zero-day malware detection based on
supervised learning algorithms of API call
signatures”, Proceedings of the Ninth Australasian
Data Mining Conference-Volume 121, pp. 171-182,
2011.

[10] Jeong-been Park, Kyoung-Soo Han, Eul-Gyu Im,
“Malware Classification Using Worth Opcodes,”
Proceedings of the Korea Information Science
2014 Korea Computer Conference, pp943-945, Jun,
2014.

[11] Yu-Jin Shim, Eul-Gyu Im, “Malware Detection
And Classification System based on API Call
Sequence,” Ph.D. Thesis. University of Hanyang,
Seoul, Republic of Korea 2016.

[12] Python Library, scikit-learn, Bernoulli naive bayes,
http://scikit-learn.org/stable/modules/naive_
bayes.html.

[13] Galit Shmueli, Nitin R. Patel, Peter C. Bruce, Data
Mining for Business Intelligence, E&Bplus, pp 166,
2006.

[14] Kwon, Y. M, Lee, I R, Kim, M. G., “A Study on
Clustering of SNS SPAM using Heuristic
Method”, The Journal of The Institute of Internet,
Broadcasting and Communication, 14.6, pp 7-12,
2014
DOL http://doi.org/10.7236/J1IBC.2014.14.6.7

[15] E. Carrera, Pefile, https://github.com/erocarrera/
pefile.

[16] Capstone, capstone, http://www.capstone-engine.org.

[17] virusshare, https://virusshare.com.

[18] joxeankoret, http://malwareurls joxeankoret.com.

[19] malcOde, http://malcOde.com.

[20] malwareblacklist, http.//www.malwareblacklist.com

% This research was supported by the R.OK, National Research Foundation under grant
NRF-2017R1D1A1B03036372, We thanks our colleagues from laboratory who provided insight
and expertise that greatly assisted the research, and thanks to National Research Foundation
who supported laboratory, Especially, | am extremely grateful to the professor who passionately

lead to me from beginning to end.

- 16 -

The Journal of The Institute of Internet, Broadcasting and Communication (IIBC)
Vol. 17, No. 6, pp.11=17, Dec. 31, 2017. pISSN 2289-0238, elSSN 2289-0246

PSIN I |

< 20162 ANt o RITHAR 8k}
A}
+ 20163 ~ SA|istaL Q| RITEH) A4}

+ 20123 7 Ak o RITeHE SpA

34 A%t 5

+ 19852 KAIST 714 -d2g8}a} AA}
+ 19932 KAIST ABEA188}} uaea
*+2007.2 F2uietn WxpE-eta) g}

+19933 T SA kL o RITe w

- 17 -

