
The Journal of The Institute of Internet, Broadcasting and Communication (IIBC)

Vol. 17, No. 6, pp.11-17, Dec. 31, 2017. pISSN 2289-0238, eISSN 2289-0246

- 11 -

https://doi.org/10.7236/JIIBC.2017.17.6.11

JIIBC 2017-6-2

Opcode와 Windows API를 사용한 멀웨어 탐지

Malware Detection Method using Opcode and windows API Calls

안태현*, 오상진*, 권영만**

Tae-Hyun Ahn*, Sang-Jin Oh*, Young-Man Kwon**

요 약 본 논문에서는 멀웨어 탐지 방법으로 Opcode (operation code)와 실행 파일에서 추출한 Windows API Call

로 구성된 특징 벡터를 사용하는 방법을 제안한다. 먼저 PE 파일에서 추출한 opcode와 windows API로 특징 벡터를

구성하고 Bernoulli Naïve Bayes과 K-Nearest Neighbor 분류기 알고리즘을 사용하여 성능을 각각 측정하였다. 실험

결과, 제안한 방법과 KNN 분류기를 사용하여 분류하면 95.21%의 멀웨어 탐지 정확도를 얻을 수 있었다. 결과적으로

기존의 Opcode 또는 Windows API 호출 중 하나만 사용하는 방법보다 제안한 방법이 멀웨어 탐지 정확도에서 높은

성능을 보인다.

Abstract We proposed malware detection method, which use the feature vector that consist of Opcode(operation
code) and Windows API Calls extracted from executable files. And, we implemented our feature vector and
measured the performance of it by using Bernoulli Naïve Bayes and K-Nearest Neighbor classifier. In experimental
result, when using the K-NN classifier with the proposed method, we obtain 95.21% malware detection accuracy. It
was better than existing methods using only either Opcode or Windows API Calls.

Key Words : Malware, PE File Format, Opcode, Windows API Calls, Machine Learning, Bernoulli Naïve Bayes,
K-Nearest Neighbor.

*준회원, 을지대학교 의료IT학과
**종신회원, 을지대학교 의료IT학과(교신저자)
접수일자: 2017년 9월 28일, 수정완료: 2017년 10월 28일
게재확정일자: 2017년 12월 8일

Received: 28 September, 2017 / Revised: 28 October, 2017 /
Accepted: 8 December, 2017
**Corresponding Author: ymkwon@eulji.ac.kr
Dept. of Medical IT, Eulji University, Korea

Ⅰ. INTRODUCTION

The term “Malware” stands for malicious software,

and it usually means the hostile software application.

The malware can be discriminated by the capability of

replication, propagation, self-execution and corruption

of the operating system[1]. According to McAfee's

latest report, the large number of new samples for the

malware are being distributed every day[2].

Because of the large number of samples for new

malware, there are many difficulties in detecting and

analyzing malware. There is a classical and popular

way to detect malware, which is signature based

method[3]. Signature was extracted manually from large

number malware sample data by heuristic-based

analysis. However, this signature-based detection

methods have several disadvantages and require high

maintenance costs to continue signature updates.

Recently, many research efforts has been reported

on data mining techniques[4]. These methods use the

Malware Detection Method using Opcode and windows API Calls

- 12 -

many kind of feature extraction methods and data

mining algorithms. In this paper, we used Opcode and

Windows API Calls as the feature vector. And we

apply Naïve Bayes (NB) and K-Nearest Neighbor

(K-NN) algorithms for usefulness of our feature

vector. As a result, we get the better result than the

existing features that is used by same algorithms.

Ⅱ. RELATED WORK

Malware detection methods can be divided by Static

Analysis and Dynamic Analysis. Static analysis is the

testing and evaluation of an application by examining

the code without executing the application. So in this

method, the performance of detection depends on

feature vectors of files. On the other hand, dynamic

analysis is the testing and evaluation of an application

while executing the program in the virtual

environment. It reveals subtle defects or vulnerabilities

whose cause is too complex to be discovered by static

analysis[5]. In this paper, We used Static Analysis, that

is automated-behavior based malware detection using

machine learning algorithm.

1. PE File Format

The PE (Portable Executable) file format is an

executable file format such as EXE, DLL, Object code

used in the Windows operating system. PE files were

created by Microsoft based on the COFF (Common

Object File Format), and transferred to PE file format

along with the introduction of the 3.1 operating system

on Windows NT. In the PE file format, the PE header

consists of DOS Header, DOS Stub, NT Header,

Section Header, and the section below it is PE body.

The section data of the PE body part is divided into

ordinary code (.text), data (.data), and resource (.rsrc)

sections and saved[6]. The overall PE file format is

shown in figure 1. For execution, the PE file is loaded

(or mapped) in memory and the section including code

and data of the executable file has different shapes

such as size and position on the process of loading.

That is, the PE file format is distinguished from the file

and memory format.

그림 1. PE파일 형식

Fig. 1. PE file format

2. Feature vectors

There are several kinds of feature vectors for the

file to detect malware. These used Opcode, Windows

API Calls, byte sequence and Header etc.[4]. In Santos

etc. al. [7], they used a frequency of the appearance of

opcode sequences. Alazab etc. al. [8] introduced the

method of classifying whether or not the executable file

is malware by using the n-gram statistical analysis of

the binary contents. And, they used the Support Vector

Machine (SVM) classifier with n-gram that was varied

from 1 to 5. Alazab etc. al. [9] had proposed and

evaluated a novel method of employing several data

mining techniques to detect and classify zero-day

malware with high levels of accuracy and efficiency

based on the frequency of Windows API Calls.

The Journal of The Institute of Internet, Broadcasting and Communication (IIBC)

Vol. 17, No. 6, pp.11-17, Dec. 31, 2017. pISSN 2289-0238, eISSN 2289-0246

- 13 -

 (a) Opcode (b) Windows API Calls

그림 2. 특징 벡터들

Fig. 2. Feature Vectors

The Opcode is a core part of a machine instruction

that embodies an operator executed by a machine and

provides functions of logical operation, program flow

control, memory processing, and arithmetic operation
[10].

The Opcode is shown in figure 2 (a). In the Windows

API Calls, API stands for Application Programming

Interface. This is functions provided by the operating

system, programming language and etc. so that it can

be used in applications. For example, The Windows

API functions consist of over 1000 functions that can

create Windows and can opening a files. These APIs

was implemented in several program modules or

routines that already exist or need to be connected to

conduct the tasks requested by a function calls[11]. API

Calls is shown in figure 2 (b).

3. Classifier

To detect malware, someone use classifier as

addressed in the above (feature vector). Another use

clustering method in existing study for spam

detection[14]. The purpose of this paper is to design the

feature vector and verify the efficiency of it. So, we

will simply use the existing classifier, especially

BernoulliNB and K-Nearest Neighbor classifier that is

implemented in scikit-learn.

The classification is a data mining (machine

learning) technique used to predict group membership

for data instances. The Naïve Bayes algorithm is based

on Bayes’ theorem. It is as follows.

  ×

Where conditional probability  is posterior

probability about belong in which classes when feature

vector w of data was given. Also,  is prior

probability,  is probability of class, and  is

probability of feature vector. When there are several

features, joint probability should be computed, but it

have many difficulties. The Naïve Bayes is that each of

features is assumed to be independent of each other.

Then, prior probability is simply computed by the

following.

  ××⋯×

In this paper, we use Bernoulli Naive Bayes use

there are two classes (malware or benign). Bernoulli

Naïve Bayes implements learning for data that is

distributed according to Bernoulli distributions.

K-Nearest Neighbor is based on instance learning.

This Algorithm classify whether the software is

malware or not by majority decision after searching k

instances of nearest neighbors. Therefore in this case,

it is important to set the appropriate the number of

instance as value of k.

Ⅲ. MPLEMENTATION OF THE

PROPOSED SYSTEM

As mentioned above we proposed feature vector as

opcode and Windows API calls to detect malware. So

we verified the efficiency of the feature vector. The

overall algorithm of detecting malware is divided by

two steps, extracting feature vector in the file and

classifying the file as malware or benign. We used

classifier in scikit-lean(Bernoulli Naive Bayes, K-NN).

In order to extract features from the PE file format

(exe, dll, etc.), we used the ‘pefile’ module [15]. At first,

we extract opcode by using ‘capstone’ module [16] that

disassembles the machine code. The second, we find

Windows API calls goal by using ‘pefile’ import library

module. The overall procedure is described in figure 3

and the detailed procedure is as follows.

Step 1: We find the code section by using ‘pefile’

module. Then we extract it and feed it into ‘capstone’

module. It is hex code format.

Step 2: Disassembler, the ‘capstone’ module, convert

Malware Detection Method using Opcode and windows API Calls

- 14 -

the hex code into the assembly language as showed in

figure 3. When using ‘capstone’, we should use it after

checking whether the OS environment of PE file is

32-bits or 64-bits.

pefile

•
•
•

PE file : Sample.exe

capstone

Opcode Windows API Calls

Step 5

Step 1

Step 2

Step 3

Step 4

 그림 3. 특징 추출 흐름도

 Fig. 3. Feature Extraction Flowchart

Step 3: We extract Opcode such as push, cmp, jnz,

etc. from assembly language. After this steps, we can

get the Opcode as feature. In this step, we excluded call

function because it is used to extract Windows API call

function. This is explained in step 5.

Step 4: As preprocessing step before step 5, we

created the sorted list that consist of DLL’s name and

the address of FirstThunk from IMAGE_IMPORT_

DESCRIPTOR. For example, we can know information

such as FirstThunk of Kernel32.dll is 0x3258(shown in

figure 3). Where the FirstThunk of IAT reveals the

start of RVA for the imported API functions. Also, we

prepare the Import Address Table (IAT) as dictionary

in order to extract individual Windows API call

function.

Step 5: In this step, we look for Windows API

Functions of all opcode ‘call’ by using the sorted list

and IAT dictionary created in the 4 step. For example,

opcode ‘call’ at the address ‘0x401073’ has ‘0x401283’ as

value of operand. And by using this value of operand,

we searched new value of address. Because value of

operand indicates new value of address. The operand of

new address is ‘jmp dword ptr [0x403274]’. And we

subtract ImageBase ‘0x400000’ from RVA ‘0x403274’. In

the result, we obtain ‘0x3274’. To get the FirstThunk of

DLL table involve '0x3274', we get the values of

FirstThunk smaller than ‘0x3274’ and get the value of

FirstThunk which has the largest value among the

obtained values through sorted FirstThunks in the step

4. The value of FirstThunk eventually obtained is

‘0x3258’. And we calculate position of Windows API

function using the dictionary of imported Windows API

functions created in step 4. In the process of

calculating, subtract FirstThunk ‘0x3258’ from the

obtained value ‘0x3274’. Because FirstThunk is

composed by dword, we divide the difference into 4. As

a result, we could obtain a value of 7, which means that

it is positioned 8 th. Eventually Windows API function

indicated by the ‘call’ at address ‘0x401073’ is

CreateFileA of kernel32.dll.

Ⅳ. EXPERIMENT AND RESULT

In this paper, we prepared 1224 files as dataset for

experiment. Among that, the 445 files are benign and

extracted from the Windows file directory (windows

\system32). In that directory, we exclude the files with

non-PE file format. We crawled 779 malware files from

the Web sites of "Virusshare[17]" and "malwareurls.

joxeankoret[18]", "malc0de[19]", "malwareblacklist[20]" and

used it for learning. Malware consists of Trojan 418,

PUP 176, Virus 58, Backdoor 34, Adware 29,

Downloader 21, Spyware 13, and so on.

Classifier used Bernoulli Naïve Bayes and

K-Nearest Neighbor. In the case of Bernoulli NB, we

set value of alpha to 0.5, where the alpha is

hyperparameter used in smoothing of maximum

likelihood. In the case of K-NN, we used k =2, because

performance is highest when k is 2 of 2-5. And, we

used Euclidean metric to compute distance between the

instances. Also, to measure performance, we used

The Journal of The Institute of Internet, Broadcasting and Communication (IIBC)

Vol. 17, No. 6, pp.11-17, Dec. 31, 2017. pISSN 2289-0238, eISSN 2289-0246

- 15 -

accuracy, true positive rate and false positive rate.

Experimental results are shown in the table 1.

TPR(True Positive Rate) is probability of correctly

identified malware. Also, FPR(False Positive Rate) is

probability of wrongly identified benign, when a

detector identifies benign as a malware. For example,

in a medical perspective, TPR is the probability that we

accurately diagnosed that cancer patient is suffering

from a cancer. On the other hand, FPR is the

probability of diagnosing that a person who does not

have cancer is suffering from cancer. If FPR is very

high, it can diagnose that everyone has cancer.

Therefore, in order to obtain reliable results, the TPR

must be high and the FPR must be low.

To obtain reliable results, the seed of two classifiers

used in the experiment was set to 0 - 10 and each

value of result was obtained. And, The average of

these results was obtained, which shown as table 1.

표 1. 분류 테스트 결과

Table 1. Result of Classification test

Feature

Extraction

Bernoulli Naïve Bayes
K-Nearest

Neighbor(k=2)

TPR FPR ACC TPR FPR ACC

Opcode 0.812314 0.096553 0.844368 0.944919 0.037896 0.951087

Windows

API

Calls

1.00000 0.184692 0.93330 0.752503 0.120117 0.797183

Proposed

method
0.86601 0.086759 0.882905 0.950263 0.044760 0.952075

In the results, when we use Bernoulli Naïve Bayes

and the feature vector is set to windows API calls, it

shows the highest accuracy of 93.33%. However, since

FPR of Bernoulli Naïve Bayes is the highest, the

probability of identifying benign as malware is high.

Overall, when looking at the accuracy of all classifier,

the accuracy of the proposed method is the highest in

case of K-NN was used. The result of the proposed

method was that TPR is about 95.03%, FPR is about

4.48%, and the accuracy is about 95.21%. The method

we proposed could have the highest accuracy results

when using the K-NN classifier than the Naive Bayes

classifier. They followed figure 4.

그림 4. 분류기별 멀웨어 탐지 비율 정확도

Fig. 4. Malware Detection Rate by Classifier

Ⅴ. Conclusion

In this paper, we proposed method that classify

whether unknown executable file is malware or not.

The method used feature vectors of Opcode and

Windows API Calls extracted from executable file and

got the better performance than existing methods. One

disadvantage is that it takes a long training time

because of the high dimension. Therefore, in the future,

we need to study feature selection to reduce dimension.

Also, In this paper, we used two classifiers such as

Bernoulli Naïve Bayes, K-Nearest Neighbor, but future

studies should derive better results through more

diverse classifiers.

References

[1] G. Bala Krishna, V. Radha, K. Venugopala Rao,

“Review of Contemporary Literature on Machine

Learning based Malware Analysis and Detection

Strategies,” Global Journal of Computer Science

and Technology, vol. 16, Issue. 5, version 1.0, pp

Malware Detection Method using Opcode and windows API Calls

- 16 -

※ This research was supported by the R.O.K. National Research Foundation under grant

NRF-2017R1D1A1B03036372. We thanks our colleagues from laboratory who provided insight

and expertise that greatly assisted the research. and thanks to National Research Foundation

who supported laboratory. Especially, I am extremely grateful to the professor who passionately

lead to me from beginning to end.

11-16, 2016.

[2] B. Kolosnjaji, A. Zarras, G. Webster, C. Eckert,

“Deep Learning for Classification of Malware

System Call sequences,” in Australasian Joint

Conference on Artificial Intelligence, pp 137-149,

2016.

[3] Z. Bu et al., McAfee Threats Report: Second

Quarter 2012, McAfee Labs, 2012.

[4] Ye, Yanfang, et al. "A Survey on Malware

Detection Using Data Mining Techniques," ACM

Computing Surveys (CSUR) vol.50,no.3, 41p, 2017.

 DOI: http://doi.org/10.1145/3073559

[5] analysis method, https://software.intel.com/

[6] Seung-Won Lee, Reversing Important Principles:

Malware analyst's reversing talk, Insight, pp

141-143, 2012.

[7] I. Santos, F. Brezo, X. Ugarte-Pedrero, PG.

Bringas, “Opcode Sequences as Representation of

Executables for data-mining-based unknown

malware detection,” Information Sciences, vol. 231,

pp. 64-82, 2013.

DOI: http://doi.org/10.1016/j.ins.2011.08.020

[8] M. Alazab, R. Layton, S. Venkataraman, P.

Watters, “Malware detection based on structural

and behavioural features of api calls”, School of

Computer and Information Science, Security

Research Centre, Edith Cowan University, Perth,

Western Australia, 2010.

[9] M. Alazab, S. Venkatraman, P. Watters, M.

Alazab, “Zero-day malware detection based on

supervised learning algorithms of API call

signatures”, Proceedings of the Ninth Australasian

Data Mining Conference-Volume 121, pp. 171-182,

2011.

[10] Jeong-been Park, Kyoung-Soo Han, Eul-Gyu Im,

“Malware Classification Using Worth Opcodes,”

Proceedings of the Korea Information Science

2014 Korea Computer Conference, pp943-945, Jun,

2014.

[11] Yu-Jin Shim, Eul-Gyu Im, “Malware Detection

And Classification System based on API Call

Sequence,” Ph.D. Thesis. University of Hanyang,

Seoul, Republic of Korea 2016.

[12] Python Library, scikit-learn, Bernoulli naïve bayes,

 http://scikit-learn.org/stable/modules/naive_

bayes.html.

[13] Galit Shmueli, Nitin R. Patel, Peter C. Bruce, Data

Mining for Business Intelligence, E&Bplus, pp 166,

2006.

[14] Kwon, Y. M., Lee, I. R., Kim, M. G., “A Study on

Clustering of SNS SPAM using Heuristic

Method”, The Journal of The Institute of Internet,

Broadcasting and Communication, 14.6, pp 7-12,

2014

DOI: http://doi.org/10.7236/JIIBC.2014.14.6.7

[15] E. Carrera, Pefile, https://github.com/erocarrera/

pefile.

[16] Capstone, capstone, http://www.capstone-engine.org.

[17] virusshare, https://virusshare.com.

[18] joxeankoret, http://malwareurls.joxeankoret.com.

[19] malc0de, http://malc0de.com.

[20] malwareblacklist, http://www.malwareblacklist.com.

The Journal of The Institute of Internet, Broadcasting and Communication (IIBC)

Vol. 17, No. 6, pp.11-17, Dec. 31, 2017. pISSN 2289-0238, eISSN 2289-0246

- 17 -

저자 소개

안 태 현(준회원)
∙2016.2 을지대학교 의료IT마케팅학과

학사

∙2016.3 ~ 을지대학교 의료IT학과 석사

과정 재학 중

오 상 진(준회원)
∙2012.3 ~ 을지대학교 의료IT학과 학사

과정 재학 중

권 영 만(종신회원)
∙1985.2 KAIST 전기및전자공학과 석사

∙1998.2 KAIST 정보통신공학과 박사수료

∙2007.2 광운대학교 전자공학과 박사

∙1993.3 ~ 을지대학교 의료IT학과 교수

