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Opcode와 Windows API를 사용한 멀웨어 탐지

Malware Detection Method using Opcode and windows API Calls
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요  약  본 논문에서는 멀웨어 탐지 방법으로 Opcode (operation code)와 실행 파일에서 추출한 Windows API Call

로 구성된 특징 벡터를 사용하는 방법을 제안한다. 먼저 PE 파일에서 추출한 opcode와 windows API로 특징 벡터를 

구성하고 Bernoulli Naïve Bayes과 K-Nearest Neighbor 분류기 알고리즘을 사용하여 성능을 각각 측정하였다. 실험 

결과, 제안한 방법과 KNN 분류기를 사용하여 분류하면 95.21%의 멀웨어 탐지 정확도를 얻을 수 있었다. 결과적으로 

기존의 Opcode 또는 Windows API 호출 중 하나만 사용하는 방법보다 제안한 방법이 멀웨어 탐지 정확도에서 높은 

성능을 보인다.

Abstract  We proposed malware detection method, which use the feature vector that consist of Opcode(operation 
code) and Windows API Calls extracted from executable files. And, we implemented our feature vector and 
measured the performance of it by using Bernoulli Naïve Bayes and K-Nearest Neighbor classifier. In experimental 
result, when using the K-NN classifier with the proposed method, we obtain 95.21% malware detection accuracy. It 
was better than existing methods using only either Opcode or Windows API Calls.

Key Words : Malware, PE File Format, Opcode, Windows API Calls, Machine Learning, Bernoulli Naïve Bayes, 
K-Nearest Neighbor.
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Ⅰ. INTRODUCTION

The term “Malware” stands for malicious software, 

and it usually means the hostile software application. 

The malware can be discriminated by the capability of 

replication, propagation, self-execution and corruption 

of the operating system[1]. According to McAfee's 

latest report, the large number of new samples for the 

malware are being distributed every day[2].

Because of the large number of samples for new 

malware, there are many difficulties in detecting and 

analyzing malware. There is a classical and popular 

way to detect malware, which is signature based 

method[3]. Signature was extracted manually from large 

number malware sample data by heuristic-based 

analysis. However, this signature-based detection 

methods have several disadvantages and require high 

maintenance costs to continue signature updates.

Recently, many research efforts has been reported 

on data mining techniques[4]. These methods use the 
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many kind of feature extraction methods and data 

mining algorithms. In this paper, we used Opcode and 

Windows API Calls as the feature vector. And we 

apply Naïve Bayes (NB) and K-Nearest Neighbor 

(K-NN) algorithms for usefulness of our feature 

vector. As a result, we get the better result than the 

existing features that is used by same algorithms.

Ⅱ. RELATED WORK

Malware detection methods can be divided by Static 

Analysis and Dynamic Analysis. Static analysis is the 

testing and evaluation of an application by examining 

the code without executing the application. So in this 

method, the performance of detection depends on 

feature vectors of files. On the other hand, dynamic 

analysis is the testing and evaluation of an application 

while executing the program in the virtual 

environment. It reveals subtle defects or vulnerabilities 

whose cause is too complex to be discovered by static 

analysis[5]. In this paper, We used Static Analysis, that 

is automated-behavior based malware detection using 

machine learning algorithm.

1. PE File Format

The PE (Portable Executable) file format is an 

executable file format such as EXE, DLL, Object code 

used in the Windows operating system. PE files were 

created by Microsoft based on the COFF (Common 

Object File Format), and transferred to PE file format 

along with the introduction of the 3.1 operating system 

on Windows NT. In the PE file format, the PE header 

consists of DOS Header, DOS Stub, NT Header, 

Section Header, and the section below it is PE body. 

The section data of the PE body part is divided into 

ordinary code (.text), data (.data), and resource (.rsrc) 

sections and saved[6]. The overall PE file format is 

shown in figure 1. For execution, the PE file is loaded 

(or mapped) in memory and the section including code 

and data of the executable file has different shapes 

such as size and position on the process of loading. 

That is, the PE file format is distinguished from the file 

and memory format.

그림 1. PE파일 형식

Fig. 1. PE file format

2. Feature vectors

There are several kinds of feature vectors for the 

file to detect malware. These used Opcode, Windows 

API Calls, byte sequence and Header etc.[4]. In Santos 

etc. al. [7], they used a frequency of the appearance of 

opcode sequences. Alazab etc. al. [8] introduced the 

method of classifying whether or not the executable file 

is malware by using the n-gram statistical analysis of 

the binary contents. And, they used the Support Vector 

Machine (SVM) classifier with n-gram that was varied 

from 1 to 5. Alazab etc. al. [9] had proposed and 

evaluated a novel method of employing several data 

mining techniques to detect and classify zero-day 

malware with high levels of accuracy and efficiency 

based on the frequency of Windows API Calls.
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 (a) Opcode               (b) Windows API Calls

그림 2. 특징 벡터들

Fig. 2. Feature Vectors

The Opcode is a core part of a machine instruction 

that embodies an operator executed by a machine and 

provides functions of logical operation, program flow 

control, memory processing, and arithmetic operation
[10]. 

The Opcode is shown in figure 2 (a). In the Windows 

API Calls, API stands for Application Programming 

Interface. This is functions provided by the operating 

system, programming language and etc. so that it can 

be used in applications. For example, The Windows 

API functions consist of over 1000 functions that can 

create Windows and can opening a files. These APIs 

was implemented in several program modules or 

routines that already exist or need to be connected to 

conduct the tasks requested by a function calls[11]. API 

Calls is shown in figure 2 (b).

3. Classifier

To detect malware, someone use classifier as 

addressed in the above (feature vector). Another use 

clustering method in existing study for spam 

detection[14]. The purpose of this paper is to design the 

feature vector and verify the efficiency of it. So, we 

will simply use the existing classifier, especially 

BernoulliNB and K-Nearest Neighbor classifier that is 

implemented in scikit-learn.

The classification is a data mining (machine 

learning) technique used to predict group membership 

for data instances. The Naïve Bayes algorithm is based 

on Bayes’ theorem. It is as follows.

  ×

Where conditional probability   is posterior 

probability about belong in which classes when feature 

vector w of data was given. Also,   is prior 

probability,   is probability of class, and   is 

probability of feature vector. When there are several 

features, joint probability should be computed, but it 

have many difficulties. The Naïve Bayes is that each of 

features is assumed to be independent of each other. 

Then, prior probability is simply computed by the 

following.

  ××⋯×

In this paper, we use Bernoulli Naive Bayes use 

there are two classes (malware or benign). Bernoulli 

Naïve Bayes implements learning for data that is 

distributed according to Bernoulli distributions.

K-Nearest Neighbor is based on instance learning. 

This Algorithm classify whether the software is 

malware or not by majority decision after searching k 

instances of nearest neighbors. Therefore in this case, 

it is important to set the appropriate the number of 

instance as value of k.

Ⅲ. MPLEMENTATION OF THE 

PROPOSED SYSTEM

As mentioned above we proposed feature vector as 

opcode and Windows API calls to detect malware. So 

we verified the efficiency of the feature vector. The 

overall algorithm of detecting malware is divided by 

two steps, extracting feature vector in the file and 

classifying the file as malware or benign. We used 

classifier in scikit-lean(Bernoulli Naive Bayes, K-NN).

In order to extract features from the PE file format 

(exe, dll, etc.), we used the ‘pefile’ module [15]. At first, 

we extract opcode by using ‘capstone’ module [16] that 

disassembles the machine code. The second, we find 

Windows API calls goal by using ‘pefile’ import library 

module. The overall procedure is described in figure 3 

and the detailed procedure is as follows.

Step 1: We find the code section by using ‘pefile’ 

module. Then we extract it and feed it into ‘capstone’ 

module. It is hex code format.

Step 2: Disassembler, the ‘capstone’ module, convert 
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the hex code into the assembly language as showed in 

figure 3. When using ‘capstone’, we should use it after 

checking whether the OS environment of PE file is 

32-bits or 64-bits.

pefile

• 
• 
• 

PE file : Sample.exe

capstone

Opcode Windows API Calls

Step 5

Step 1

Step 2

Step 3

Step 4

 

   그림 3. 특징 추출 흐름도

   Fig. 3. Feature Extraction Flowchart

Step 3: We extract Opcode such as push, cmp, jnz, 

etc. from assembly language. After this steps, we can 

get the Opcode as feature. In this step, we excluded call 

function because it is used to extract Windows API call 

function. This is explained in step 5.

Step 4: As preprocessing step before step 5, we 

created the sorted list that consist of DLL’s name and 

the address of FirstThunk from IMAGE_IMPORT_ 

DESCRIPTOR. For example, we can know information 

such as FirstThunk of Kernel32.dll is 0x3258(shown in 

figure 3). Where the FirstThunk of IAT reveals the 

start of RVA for the imported API functions. Also, we 

prepare the Import Address Table (IAT) as dictionary 

in order to extract individual Windows API call 

function.

Step 5: In this step, we look for Windows API 

Functions of all opcode ‘call’ by using the sorted list 

and IAT dictionary created in the 4 step. For example, 

opcode ‘call’ at the address ‘0x401073’ has ‘0x401283’ as 

value of operand. And by using this value of operand, 

we searched new value of address. Because value of 

operand indicates new value of address. The operand of 

new address is ‘jmp dword ptr [0x403274]’. And we 

subtract ImageBase ‘0x400000’ from RVA ‘0x403274’. In 

the result, we obtain ‘0x3274’. To get the FirstThunk of 

DLL table involve '0x3274', we get the values of 

FirstThunk smaller than ‘0x3274’ and get the value of 

FirstThunk which has the largest value among the 

obtained values through sorted FirstThunks in the step 

4. The value of FirstThunk eventually obtained is 

‘0x3258’. And we calculate position of Windows API 

function using the dictionary of imported Windows API 

functions created in step 4. In the process of 

calculating, subtract FirstThunk ‘0x3258’ from the 

obtained value ‘0x3274’. Because FirstThunk is 

composed by dword, we divide the difference into 4. As 

a result, we could obtain a value of 7, which means that 

it is positioned 8 th. Eventually Windows API function 

indicated by the ‘call’ at address ‘0x401073’ is 

CreateFileA of kernel32.dll.

Ⅳ. EXPERIMENT AND RESULT

In this paper, we prepared 1224 files as dataset for 

experiment. Among that, the 445 files are benign and 

extracted from the Windows file directory (windows 

\system32). In that directory, we exclude the files with 

non-PE file format. We crawled 779 malware files from 

the Web sites of "Virusshare[17]" and "malwareurls. 

joxeankoret[18]", "malc0de[19]", "malwareblacklist[20]" and 

used it for learning. Malware consists of Trojan 418, 

PUP 176, Virus 58, Backdoor 34, Adware 29, 

Downloader 21, Spyware 13, and so on.

Classifier used Bernoulli Naïve Bayes and 

K-Nearest Neighbor. In the case of Bernoulli NB, we 

set value of alpha to 0.5, where the alpha is 

hyperparameter used in smoothing of maximum 

likelihood. In the case of K-NN, we used k =2, because 

performance is highest when k is 2 of 2-5. And, we 

used Euclidean metric to compute distance between the 

instances. Also, to measure performance, we used 
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accuracy, true positive rate and false positive rate.

Experimental results are shown in the table 1. 

TPR(True Positive Rate) is probability of correctly 

identified malware. Also, FPR(False Positive Rate) is 

probability of wrongly identified benign, when a 

detector identifies benign as a malware. For example, 

in a medical perspective, TPR is the probability that we 

accurately diagnosed that cancer patient is suffering 

from a cancer. On the other hand, FPR is the 

probability of diagnosing that a person who does not 

have cancer is suffering from cancer. If FPR is very 

high, it can diagnose that everyone has cancer. 

Therefore, in order to obtain reliable results, the TPR 

must be high and the FPR must be low.

To obtain reliable results, the seed of two classifiers 

used in the experiment was set to 0 - 10 and each 

value of result was obtained. And, The average of 

these results was obtained, which shown as table 1.

표 1. 분류 테스트 결과

Table 1. Result of Classification test

Feature 

Extraction

Bernoulli Naïve Bayes
K-Nearest 

Neighbor(k=2)

TPR FPR ACC TPR FPR ACC

Opcode 0.812314 0.096553 0.844368 0.944919 0.037896 0.951087

Windows

API

Calls

1.00000 0.184692 0.93330 0.752503 0.120117 0.797183

Proposed 

method
0.86601 0.086759 0.882905 0.950263 0.044760 0.952075

In the results, when we use Bernoulli Naïve Bayes 

and the feature vector is set to windows API calls, it 

shows the highest accuracy of 93.33%. However, since 

FPR of Bernoulli Naïve Bayes is the highest, the 

probability of identifying benign as malware is high. 

Overall, when looking at the accuracy of all classifier, 

the accuracy of the proposed method is the highest in 

case of K-NN was used. The result of the proposed 

method was that TPR is about 95.03%, FPR is about 

4.48%, and the accuracy is about 95.21%. The method 

we proposed could have the highest accuracy results 

when using the K-NN classifier than the Naive Bayes 

classifier. They followed figure 4.

그림 4. 분류기별 멀웨어 탐지 비율 정확도

Fig. 4. Malware Detection Rate by Classifier

Ⅴ. Conclusion

In this paper, we proposed method that classify 

whether unknown executable file is malware or not. 

The method used feature vectors of Opcode and 

Windows API Calls extracted from executable file and 

got the better performance than existing methods. One 

disadvantage is that it takes a long training time 

because of the high dimension. Therefore, in the future, 

we need to study feature selection to reduce dimension.

Also, In this paper, we used two classifiers such as 

Bernoulli Naïve Bayes, K-Nearest Neighbor, but future 

studies should derive better results through more 

diverse classifiers.
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