• 제목/요약/키워드: k-means cluster analysis

검색결과 375건 처리시간 0.027초

Nonlinear damage detection using linear ARMA models with classification algorithms

  • Chen, Liujie;Yu, Ling;Fu, Jiyang;Ng, Ching-Tai
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.23-33
    • /
    • 2020
  • Majority of the damage in engineering structures is nonlinear. Damage sensitive features (DSFs) extracted by traditional methods from linear time series models cannot effectively handle nonlinearity induced by structural damage. A new DSF is proposed based on vector space cosine similarity (VSCS), which combines K-means cluster analysis and Bayesian discrimination to detect nonlinear structural damage. A reference autoregressive moving average (ARMA) model is built based on measured acceleration data. This study first considers an existing DSF, residual standard deviation (RSD). The DSF is further advanced using the VSCS, and then the advanced VSCS is classified using K-means cluster analysis and Bayes discriminant analysis, respectively. The performance of the proposed approach is then verified using experimental data from a three-story shear building structure, and compared with the results of existing RSD. It is demonstrated that combining the linear ARMA model and the advanced VSCS, with cluster analysis and Bayes discriminant analysis, respectively, is an effective approach for detection of nonlinear damage. This approach improves the reliability and accuracy of the nonlinear damage detection using the linear model and significantly reduces the computational cost. The results indicate that the proposed approach is potential to be a promising damage detection technique.

대도시 젊은이들의 라이프스타일 유형별 외식서비스 인카운터 중요 속성 연구 (The Important Attributes of Foodservice Encounters According to Life-style Types as Offered by Young Metropolitan Customers)

  • 윤혜려;조미숙
    • 한국식품조리과학회지
    • /
    • 제23권3호통권99호
    • /
    • pp.327-336
    • /
    • 2007
  • Life-style factors often include social relationships as well as consumption, entertainment and dress patterns. They also typically reflect an individual's attitudes, values and worldview. Life-style types have become and an important factor for segmenting customer markets ever since significant relationships between life-style and customers' behavior was proven. This study examined the relationships between the life-styles of young customers' and the important attributes of foodservice encounters. Factors analysis with VARIMAX and K-means cluster analysis were conducted to group the subjects by life-style. According to the factors analysis, four underlying dimensions were identified and labeled: (1) 'actively fashioned', (2) 'luxury picky', (3) 'healthy toward', and (4) 'utilitarian leisure'. Based on the factor scores derived from the factors analysis, the K-means cluster analysis classified three groups as statistically significant using ANOVA(p<0.05). The overall mean score for the 3rd cluster 'trendy-active picky' was higher than the other two clusters, and represented very picky attitudes about foodservice attributes. The 3rd cluster also seemed to apply higher standards to all of the foodservice attributes. By order of importance, the most important attributes of the 2nd cluster 'pursue-utilitarian leisure' were food serving time, automation systems, server's hygienes, employee kindness, time in line, and menu variety. In spite of low concerns for the life-style attributes, the first cluster 'passively indifferent' recognized menu variety, food sanitation, food serving time, server's hygiene, menu price, air circulation, and room temperature as important. These results suggest that young diners in Korea could be classified by their diverse life-styles that are represented as trendy, utilitarian, and indifferent and will hopefully contribute to the foodservice industry's ability to segment customer characteristics by different life-styles in Korea.

군집분석을 이용한 아동의 창의적 사고유형 분석 (An Analysis of Children's Creative Thinking Styles According to Cluster Analysis)

  • 김경은;김은아;김성희
    • 아동학회지
    • /
    • 제35권2호
    • /
    • pp.103-115
    • /
    • 2014
  • This study explored the creative thinking styles of children according to cluster analysis and examined group differences in the gender of children. The participants consisted of 250 elementary school students living in Seoul, Korea. Data were analyzed by means of cluster analysis and ${\chi}^2$ test. The results from the cluster analysis based on the scores on the sub-factors of TTCT(Torrance Test of Creative Thinking) suggested the existence of four clusters('Non-creative', 'Divergent creative', 'Elaborate creative, 'Multiple creative'). Additionally, four clusters were found to be differentiated according to gender.

Assessment of Premature Ventricular Contraction Arrhythmia by K-means Clustering Algorithm

  • Kim, Kyeong-Seop
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권5호
    • /
    • pp.65-72
    • /
    • 2017
  • Premature Ventricular Contraction(PVC) arrhythmia is most common abnormal-heart rhythm that may increase mortal risk of a cardiac patient. Thus, it is very important issue to identify the specular portraits of PVC pattern especially from the patient. In this paper, we propose a new method to extract the characteristics of PVC pattern by applying K-means machine learning algorithm on Heart Rate Variability depicted in Poinecare plot. For the quantitative analysis to distinguish the trend of cluster patterns between normal sinus rhythm and PVC beat, the Euclidean distance measure was sought between the clusters. Experimental simulations on MIT-BIH arrhythmia database draw the fact that the distance measure on the cluster is valid for differentiating the pattern-traits of PVC beats. Therefore, we proposed a method that can offer the simple remedy to identify the attributes of PVC beats in terms of K-means clusters especially in the long-period Electrocardiogram(ECG).

소비자 군집분석을 통한 온라인 쇼핑몰 마케팅 전략 수립 (Establishment of Marketing Strategy for Online Shopping Mall through Customer Cluster Analysis)

  • 김성혜;배준수
    • 산업경영시스템학회지
    • /
    • 제47권3호
    • /
    • pp.163-173
    • /
    • 2024
  • This study aims to establish an online shopping mall marketing strategy based on big data analysis methods. The customer cluster analysis method was utilized to analyze customer purchase patterns and segment them into customer groups with similar characteristics. Data was collected from orders placed over one year in 2023 at 'Jeonbuk Saengsaeng Market', the official online shopping mall for agricultural, fish, and livestock products of Jeonbuk Special Self-Governing Province. K-means clustering was conducted by creating variables such as 'TotalPrice' and 'ElapsedDays' for analysis. The study identified four customer groups, and their main characteristics. Furthermore, regions corresponding to customer groups were analyzed using pivot tables. This facilitated the proposal of a marketing strategy tailored to each group's characteristics and the establishment of an efficient online shopping mall marketing strategy. This study is significant as it departs from the traditional reliance on the intuition of the person in charge to operate a shopping mall, instead establishing a shopping mall marketing strategy through objective and scientific big data analysis. The implementation of the marketing strategy outlined in this study is expected to enhance customer satisfaction and boost sales.

Optical Emission Spectra 신호와 다변량분석기법을 통한 Fluorocarbon에 의해 오염된 반응기의 RF 플라즈마 세정공정 진단 (RF Plasma Processes Monitoring for Fluorocarbon Polluted Plasma Chamber Cleaning by Optical Emission Spectroscopy and Multivariate Analysis)

  • 장해규;이학승;채희엽
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.242-243
    • /
    • 2015
  • Fault detection using optical emission spectra with modified K-means cluster analysis and principal component anal ysis are demonstrated for inductive coupl ed pl asma cl eaning processes. The optical emission spectra from optical emission spectroscopy (OES) are used for measurement. Furthermore, Principal component analysis and K-means cluster analysis algorithm is modified and applied to real-time detection and sensitivity enhancement for fluorocarbon cleaning processes. The proposed techniques show clear improvement of sensitivity and significant noise reduction when they are compared with single wavelength signals measured by OES. These techniques are expected to be applied to various plasma monitoring applications including fault detections as well as chamber cleaning endpoint detection.

  • PDF

주성분 분석의 K 평균 알고리즘을 통한 XML 문서 군집화 기법 (XML Document Clustering Technique by K-means algorithm through PCA)

  • 김우생
    • 정보처리학회논문지D
    • /
    • 제18D권5호
    • /
    • pp.339-342
    • /
    • 2011
  • 최근 들어 인터넷에서 많이 사용되는 XML 문서들을 효율적으로 접근, 질의, 저장하는 방법들이 연구된다. 본 논문은 XML 문서들을 효율적으로 군집화 하는 새로운 기법을 제안한다. XML 문서를 대응하는 트리 구조의 원소들의 이름과 레벨로 표현하여 특징 벡터 공간상의 벡터로 나타내고 주성분 분석을 통한 k 평균 알고리즘 기법을 사용하여 군집화를 시도한다. 실험 결과를 통하여 제안하는 기법이 좋은 결과를 얻을 수 있음을 보였다.

Fiscal Policy Effectiveness Assessment Based on Cluster Analysis of Regions

  • Martynenko, Valentyna;Kovalenko, Yuliia;Chunytska, Iryna;Paliukh, Oleksandr;Skoryk, Maryna;Plets, Ivan
    • International Journal of Computer Science & Network Security
    • /
    • 제22권7호
    • /
    • pp.75-84
    • /
    • 2022
  • The efficiency of the regional fiscal policy implementation is based on the achievement of target criteria in the formation and distribution of own financial resources of local budgets, reducing their deficit and reducing dependence on transfers. It is also relevant to compare the development of financial autonomy of regions in the course of decentralisation of fiscal relations. The study consists in the cluster analysis of the effectiveness of fiscal policy implementation in the context of 24 regions and the capital city of Kyiv (except for temporarily occupied territories) under conditions of fiscal decentralisation. Clustering of the regions of Ukraine by 18 indicators of fiscal policy implementation efficiency was carried out using Ward's minimum variance method and k-means clustering algorithm. As a result, the regions of Ukraine are grouped into 5 homogeneous clusters. For each cluster measures were developed to increase own revenues and minimize dependence on official transfers to increase the level of financial autonomy of the regions. It has been proved that clustering algorithms are an effective tool in assessing the effectiveness of fiscal policy implementation at the regional level and stimulating further expansion of financial decentralisation of regions.

분류나무를 활용한 군집분석의 입력특성 선택: 신용카드 고객세분화 사례 (Classification Tree-Based Feature-Selective Clustering Analysis: Case of Credit Card Customer Segmentation)

  • 윤한성
    • 디지털산업정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.1-11
    • /
    • 2023
  • Clustering analysis is used in various fields including customer segmentation and clustering methods such as k-means are actively applied in the credit card customer segmentation. In this paper, we summarized the input features selection method of k-means clustering for the case of the credit card customer segmentation problem, and evaluated its feasibility through the analysis results. By using the label values of k-means clustering results as target features of a decision tree classification, we composed a method for prioritizing input features using the information gain of the branch. It is not easy to determine effectiveness with the clustering effectiveness index, but in the case of the CH index, cluster effectiveness is improved evidently in the method presented in this paper compared to the case of randomly determining priorities. The suggested method can be used for effectiveness of actively used clustering analysis including k-means method.

전국 도시대기 측정망의 2000~2005년 PM10 농도 군집분석 (Cluster Analysis of PM10 Concentrations from Urban Air Monitoring Network in Korea during 2000 to 2005)

  • 한지현;이미혜;김영성
    • 한국대기환경학회지
    • /
    • 제24권3호
    • /
    • pp.300-309
    • /
    • 2008
  • Variations in PM10 concentration between 2000 and 2005 from 84 urban air monitoring stations operated by the government were analyzed. The K-means cluster analysis was attempted using annual average and the 99th percentile of daily averages as parameters. The results obtained by excluding Asian dust episode days were compared with those obtained by using all available data. In any cases, the cluster with the highest mean concentration was mostly composed of stations in Seoul and Gyeonggi. Annual average of the cluster with the highest mean concentration showed a distinct decreasing trend, but that excluding Asian dust episode days did not show such a trend. Without Asian dust episode days high concentrations of monthly averages in March and April were also not observed. The effect of Asian dust was more pronounced in the 99th percentile of daily averages. The 99th percentile of daily averages of the cluster with the highest mean concentration was the highest in June following downs in April and May.