• Title/Summary/Keyword: k-gamma function

Search Result 828, Processing Time 0.03 seconds

Multiple Parallel-Pollard's Rho Discrete Logarithm Algorithm

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.8
    • /
    • pp.29-33
    • /
    • 2015
  • This paper proposes a discrete logarithm algorithm that remarkably reduces the execution time of Pollard's Rho algorithm. Pollard's Rho algorithm computes congruence or collision of ${\alpha}^a{\beta}^b{\equiv}{\alpha}^A{\beta}^B$ (modp) from the initial value a = b = 0, only to derive ${\gamma}$ from $(a+b{\gamma})=(A+B{\gamma})$, ${\gamma}(B-b)=(a-A)$. The basic Pollard's Rho algorithm computes $x_i=(x_{i-1})^2,{\alpha}x_{i-1},{\beta}x_{i-1}$ given ${\alpha}^a{\beta}^b{\equiv}x$(modp), and the general algorithm computes $x_i=(x_{i-1})^2$, $Mx_{i-1}$, $Nx_{i-1}$ for randomly selected $M={\alpha}^m$, $N={\beta}^n$. This paper proposes 4-model Pollard Rho algorithm that seeks ${\beta}_{\gamma}={\alpha}^{\gamma},{\beta}_{\gamma}={\alpha}^{(p-1)/2+{\gamma}}$, and ${\beta}_{{\gamma}^{-1}}={\alpha}^{(p-1)-{\gamma}}$) from $m=n={\lceil}{\sqrt{n}{\rceil}$, (a,b) = (0,0), (1,1). The proposed algorithm has proven to improve the performance of the (0,0)-basic Pollard's Rho algorithm by 71.70%.

Design of bivariate step-stress partially accelerated degradation test plan using copula and gamma process

  • Srivastava, P.W.;Manisha, Manisha;Agarwal, M.L.
    • International Journal of Reliability and Applications
    • /
    • v.17 no.1
    • /
    • pp.21-49
    • /
    • 2016
  • Many mechanical, electrical and electronic products have more than one performance characteristics (PCs). For example the performance degradation of rubidium discharge lamps can be characterized by the rubidium consumption or the decreasing intensity the lamp. The product may degrade due to all the PCs which may be independent or dependent. This paper deals with the design of optimal bivariate step-stress partially accelerated degradation test (PADT) with degradation paths modelled by gamma process. The dependency between PCs has been modelled through Frank copula function. In partial step-stress loading, the unit is tested at usual stress for some time, and then the stress is accelerated. This helps in preventing over-stressing of the test specimens. Failure occurs when the performance characteristic crosses the critical value the first time. Under the constraint of total experimental cost, the optimal test duration and the optimal number of inspections at each intermediate stress level are obtained using variance optimality criterion.

A reducible case of double hypergeometric series involving the riemann $zeta$-function

  • Park, Junesang;H. M. Srivastava
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.107-110
    • /
    • 1996
  • Usng the Pochhammer symbol $(\lambda)_n$ given by $$ (1.1) (\lambda)_n = {1, if n = 0 {\lambda(\lambda + 1) \cdots (\lambda + n - 1), if n \in N = {1, 2, 3, \ldots}, $$ we define a general double hypergeometric series by [3, pp.27] $$ (1.2) F_{q:s;\upsilon}^{p:r;u} [\alpha_1, \ldots, \alpha_p : \gamma_1, \ldots, \gamma_r; \lambda_1, \ldots, \lambda_u;_{x,y}][\beta_1, \ldots, \beta_q : \delta_1, \ldots, \delta_s; \mu_1, \ldots, \mu_v; ] = \sum_{l,m = 0}^{\infty} \frac {\prod_{j=1}^{q} (\beta_j)_{l+m} \prod_{j=1}^{s} (\delta_j)_l \prod_{j=1}^{v} (\mu_j)_m)}{\prod_{j=1}^{p} (\alpha_j)_{l+m} \prod_{j=1}^{r} (\gamma_j)_l \prod_{j=1}^{u} (\lambda_j)_m} \frac{l!}{x^l} \frac{m!}{y^m} $$ provided that the double series converges.

  • PDF

Effect of Microdiversity and Macrodiversity on Average Bit Error Probability in Gamma-Shadowed Rician Fading Channels

  • Milenkovic, Vladeta Vasilije;Sekulovic, Nikola Milos;Stefanovic, Mihajlo Caslav;Petrovic, Mile Branko
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.464-467
    • /
    • 2010
  • In this letter, we analyze the error performance of a mobile communication system with microdiversity and macrodiversity reception in gamma-shadowed Rician fading channels for a binary differential phase-shift keying modulation scheme. Analytical expressions for the probability density function (PDF) and moment-generating function (MGF) are derived. The average bit error probability can be calculated by averaging the conditional bit error probability over the PDF or using the MGF-based approach. Numerical results are graphically presented to show the effects of macrodiversity, correlation, number of diversity branches, and severity of both fading and shadowing.

ON CONSTRUCTING A HIGHER-ORDER EXTENSION OF DOUBLE NEWTON'S METHOD USING A SIMPLE BIVARIATE POLYNOMIAL WEIGHT FUNCTION

  • LEE, SEON YEONG;KIM, YOUNG IK
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.491-497
    • /
    • 2015
  • In this paper, we have suggested an extended double Newton's method with sixth-order convergence by considering a control parameter ${\gamma}$ and a weight function H(s, u). We have determined forms of ${\gamma}$ and H(s, u) in order to induce the greatest order of convergence and established the main theorem utilizing related properties. The developed theory is ensured by numerical experiments with high-precision computation for a number of test functions.

Extreme values of a gaussian process

  • Choi, Y.K.;Hwang, K.S.;Kang, S.B.
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.739-751
    • /
    • 1995
  • Let ${X(t) : 0 \leq t < \infty}$ be an almost surely continuous Gaussian process with X(0) = 0, E{X(t)} = 0 and stationary increments $E{X(t) - X(s)}^2 = \sigma^2($\mid$t - s$\mid$)$, where $\sigma(y)$ is a function of $y \geq 0(e.g., if {X(t);0 \leq t < \infty}$ is a standard Wiener process, then $\sigma(t) = \sqrt{t})$. Assume that $\sigma(t), t > 0$, is a nondecreasing continuous, regularly varying function at infinity with exponent $\gamma$ for some $0 < \gamma < 1$.

  • PDF

Relationship between Secondary Electron Emissions and Film Thickness of Hydrogenated Amorphous Silicon

  • Yang, Sung-Chae;Chu, Byung-Yoon;Ko, Seok-Cheol;Han, Byoung-Sung
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.185-189
    • /
    • 2004
  • The temporal variation of a secondary electron emission coefficient (${\gamma}$ coefficient) of hydrogenated amorphous silicon (a-Si:H) was investigated in a dc silane plasma. Estimated ${\gamma}$ coefficients have a value of 2.73 ${\times}$ 10$^{-2}$ on the pure aluminum electrode and 1.5 ${\times}$ 10$^{-3}$ after 2 hours deposition of -Si:H thin films on a cathode. It showed an abrupt decrease for about 30 minutes before saturation. The variation of the ${\gamma}$ coefficient was estimated as a function of the thin film thickness, and the film thickness was about 80 nm after 30 minutes deposition time. These results are compared with the results of a computer simulation for ion penetration into a cathode.

NEW CLASS OF INTEGRALS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTION AND THE LOGARITHMIC FUNCTION

  • Kim, Yongsup
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.329-342
    • /
    • 2016
  • Motivated essentially by Brychkov's work [1], we evaluate some new integrals involving hypergeometric function and the logarithmic function (including those obtained by Brychkov[1], Choi and Rathie [3]), which are expressed explicitly in terms of Gamma, Psi and Hurwitz zeta functions suitable for numerical computations.

ON THE MODULAR FUNCTION $j_4$ OF LEVEL 4

  • Kim, Chang-Heon;Koo, Ja-Kyung
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.903-931
    • /
    • 1998
  • Since the modular curves X(N) = $\Gamma$(N)\(equation omitted)* (N =1,2,3) have genus 0, we have field isomorphisms K(X(l))(equation omitted)C(J), K(X(2))(equation omitted)(λ) and K(X(3))(equation omitted)( $j_3$) where J, λ are the classical modular functions of level 1 and 2, and $j_3$ can be represented as the quotient of reduced Eisenstein series. When N = 4, we see from the genus formula that the curve X(4) is of genus 0 too. Thus the field K(X(4)) is a rational function field over C. We find such a field generator $j_4$(z) = x(z)/y(z) (x(z) = $\theta$$_3$((equation omitted)), y(z) = $\theta$$_4$((equation omitted)) Jacobi theta functions). We also investigate the structures of the spaces $M_{k}$($\Gamma$(4)), $S_{k}$($\Gamma$(4)), M(equation omitted)((equation omitted)(4)) and S(equation omitted)((equation omitted)(4)) in terms of x(z) and y(z). As its application, we apply the above results to quadratic forms.rms.

  • PDF