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ON THE MODULAR FUNCTION j; OF LEVEL 4
CuHaNG HEoN KiMm AND JA Kyung Koo

ABSTRACT. Since the modular curves X(N) = D(N)\$* (N =
1,2,3) have genus 0, we have field isomorphisms K(X (1)) = C(J),
K(X(2)) = C(\) and K(X(3)) =~ C(j3) where J, X are the classical
modular functions of level 1 and 2, and j3 can be represented as the
quotient of reduced Eisenstein series. When N = 4, we see from
the genus formula that the curve X (4) is of genus 0 too. Thus the
field K(X(4)) is a rational function field over C. We find such a
field generator js(2) = z(2)/y(2) (x(2) = 03(3), y(z) = 04(3) Jacobi
theta functions). We also investigate the structures of the spaces
Mi(T(4)), Sk(T'(4)), My (T'(4)) and Sy (f(4)) in terms of z(z) and
y(z). As its application, we apply the above results to quadratic
forms.

0. Introduction

Let $ be the complex upper half plane. Then SLy(Z) actson $ by
(e8). 7= %’i’ forte€ 9. Let (V) (N =1,2,3,---) be the principal
congruence subgroups of SLy(Z) of level N and let $* be the union of
$ and PY(Q). The modular curve T(N)\$* is a projective closure of
smooth affine curve I'(N)\$, which we denote by X (N), with genus gy.
We identify the function field K(X(N)) on the modular curve X(N)
with the field of modular functions of level N. By the genus formula
([11] Ch. IV §7, or [14] Proposition 1.40), the curves X (1), X(2) and
X(3) have genus 0. Theoretically, we then have field isomorphisms
K(X(1)) = C(J), K(X(2)) = C()\) and K(X(3)) = C(js) where J, X

are the classical modular functions of level 1 and 2, respectively and j3
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can be represented as the quotient of reduced Eisenstein series ([11] Ch.
VII §1.2). Since the curve X(4) is of genus 0 too, the field K (X (4)) is
a rational function field over C. In this case we shall find such a field
generator j; (§2, Theorem 7) by means of theory of half integral modular
forms. For generalities of half integral forms, we refer to [3] and [15].
In §1 we shall show, for later use, the generators and the cusps of the
inhomogeneous group T'(4). In §3 we shall investigate the generators

of the spaces M(I'(4)), Sk(T'(4)), Mi(T'(4)) (the space of half integral

modular forms of level 4) and Sy (T'(4)) (the space of half integral cusp
forms of level 4) in terms of Jacobi theta functions. Also, we shall
prove in Theorem 16 that the normalized field generator N(j;)(2) is
an algebraic integer for z € $ N Q(v/—d) (d > 0) (for notations, refer
to [1]). In §4 we shall express j; as the quotient of reduced gp-division
values pn;* where p is the Weierstrass p-function. And we shall show
in Theorem 18 that Q@(j4) is none other than the field of all the modular
functions of level 4 whose Fourier expansions with respect to g4 (= €™#/?)
have rational coefficients.

In §5 we shall apply the result that K(X(4)) is equal to C(j;) to
quadratic forms. Let Q(n,1) be the set of even unimodular positive
definite integral quadratic forms in n-variables. For A[X]in Q(n, 1), the
theta series 04(z) = 3 ycz, €™*4X! (2 € 9) is a modular form of weight
5. Ifn > 24 and A[X], B[X] € Q(n,1), then the quotient f4) is a
modular function of level V. We shall extend the results in [5] to the
case N = 4. In other words, since 328 is also a modular function of
level 4, we can write it as a rational function of j4 (Theorem 21). In
case n = 24, we shall be successful in §6 and Appendix B in completely
determining the theta series 84(2) as symmetric polynomials over Q in
63(%) and 04(%) where 65,6, are the Jacobi theta functions.

Through this article we adopt the following notations:

$H* the extended complex upper half plane

I(N) ={y€ SLy(Z)|y=1 mod N}

[o(N) the Hecke subgroup {(¢%) € (1)} ¢ =0 mod N}

X(N) =T(N)\%H"

Xo(N) = To(N)\&*

T the inhomogeneous group of I'(= '/ + I)

qh = e2m’z/h, ZEH

M (T'(N)) the space of modular forms of weight & with respect to
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the group ['(N)

a ~ b means that a is equivalent to b

z — 100 denotes that z goes to ioco .

We shall always take the branch of the square root having argument
in (-=%,3]. Thus, \/z is a holomorphic function on the complex plane
with the negative real axis (—oo, 0] removed. For any integer &, we define

2% to mean (v/z)*.

1. Generators and cusps of ['(4)

Let T'; and I's be two congruence subgroups of I'(1) such that I’y C T';.
A subset F, of the extended upper half plane $* is called a fundamental
set for the group Iy if it contains exactly one representative of each class
of points of $H* equivalent under T';. A set F; is called a fundamental
region if F; contains a fundamental set and if 2 € F;,v2z € F, and
v(# I) € T, imply that z is a boundary point of F,.

PROPOSITION 1. IfT, = U,’lefza,, is a coset decomposition of T, and
F, is a fundamental region for I'y, then F; = Uj,_ o, (F1) is a fundamen-
tal region for ['5.

Proof. Theorem 2.3.5 [10]. a

THEOREM 2. Let T, be a congruence subgroup of T'(1) of finite in-
dex and F be a fundamental region for T';. Then the sides of F can
be grouped into pairs Aj, \j(j = 1,2,. ..,8) in such a way that \; C F
and \; = y;\; where v; € (j = 1,2,...,8). v;’s are called bound-
ary substitutions of F. Furthermore, T is generated by the boundary
substitutions i, . .., "Ys-

Proof. For the first part, one is referred to [10], p. 58. For any vy € Ty,
suppose there exists a sequence of images of F; F, 51 F,SoF,...,S5,F =
7F (S; € T), each adjacent to its successor. Let F N S, F 2 Aj. Since
v;A; = A; and y;F is another fundamental region, v;F = S1F, that is,
Sy = ;. Then, v;A, 1Ai(t = 1,2,...,s) form the sides of S;F. And
(fijy]-“l)vj/\i =X, le, fyjfyn/j”l(i =1,...,s) are boundary substitu-
tions of S;F. Now, we will use induction on n to show that S,(= v) is
generated by 7,...,7s and boundary substitutions are also generated
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by them. The case n = 1 has been done. Now, denote the sides of S,,_; F
by wi, g (6=1,2,...,s). Let Lij; = p} fori =1,...,s. Then, by induc-
tion hypothesis, S,_; and L; (1 = 1,...,s) are generated by 7vi,...,7,.
If Sp s F NS F 2 pj, then Lijp; = p; implies that L;S, \F = S, F,
i.e, S, = L;jSp—1. Hence, it is generated by v,...,7s. Also, the set
of all points in §) belonging to the region S,F that can be reached by
such sequences is open, and so also is its complement in § which must
therefore be empty by connectedness of $. This completes the proof of
the theorem. 0

Now, we will find the generators of the group I'(4) by means of Propo-
sition 1 and Theorem 2. It is well known that the fundamental region for

I'(2) is given by the figure ([11], p. 84) where T = (}1), S=(?3).

T2

C F J

m
1 0 1
@

On the other hand, T'(2) has the following right coset decomposition

T(2)=T@uT@T1r?*uT4)auT4)s

where o = ST~2S and 8 = (ST)~'T?ST. Then Proposition 1 gives rise
to the following fundamental region for I'(4).
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Note that —2 ~ 2, -1 ~ 3, =2 ~ £ and -2 ~ 1 in I'(4)\H*, which
illustrates that there are six I'(4)-inequivalent cusps o0,0,1, —1, —2, %
Now, we will choose appropriate elements from I'(4) which describe the
above equivalences. The proof of Lemma 1.41 in [14] provides the idea

of explicit construction of them. Based on it, one can have

(i1)-0=0 (i1)-(-1)=1/3
(F)- V=13 (F3H)-(- 3/2)—1/2
(813)'( 3/2)=1/2 (3183 ( 5/)
(A7) (=5/3=1  (Z2F)

Now, put 7 = (34), % = (12), 2 = (F54), w = (34), and
v5 = (25 2). Then, as described in the above figure, v; sends bound-
aries to boundaries for ¢ = 1,...,5 because a linear fractional transfor-
mation maps a semicircle to a semicircle.

For the sake of convenience in use, we will express 7;’s as a combi-
nation of S and T?2. Obviously, v, = T*. Now, consider the case of 7.
Y200 = 1, S(1200) = —4, T4Sv,00 = 0. By computing TS~,, one gets
T4Sy, = S Hence vy, = S~1TS.

Next, consider the case of 75. 7300 = &, Sy;00 = =8, T2Sy300

ST?*Sy00 = 2, T2ST?Sy00 = —

M
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T-2ST28T28 y300 = 0, ST 2ST~2ST?S 3 0o = co. By computing
ST=25T-2ST?S~;3, one gets ST 2ST-2ST*Sy; = T?. Hence,

vy = S—IT—QS—1T25——1T25—1T2
= ST 2ST?ST*ST? since S~! = 8.
By a similar computation, one has
vs = ST ST 2ST*ST*?
=T2S'T*ST?.

2. Hauptfunktionen of level 4 as a quotient of Jacobi theta
functions

For p,v € R and z € §, put
1\?
Ouu(2) = nezzexp {m’ (n + §u> z+ m’nu} .

This series uniformly converges for Im(z) > n > 0, and hence defines a
holomorphic function on $.

THEOREM 3. Ifz € §, then O,,(z) = i ::;”: v—u{—1/2).

Proof. Theorem 7.1.1 [10]. O

We recall the Jacobi theta functions 65, 63, 6, defined by

03(2) := O19(2) = Z‘b(n%)g

nez

B3(2) = Ooo(2) = Y _ qf
neZ

04(z) := O, (2) = Z(—l)"qu .
neZ

Then we have the following transformation formulas.



On the modular function j4 of level 4 909

THEOREM 4. For all z € §,

(1) Oa(z+1) =eiy(2) (i) 6a(=1/2) = (—iz)*0u(2)
f5(z + 1) = 04(z) 03(=1/2) = (—iz)265(2)
04(z + 1) = 65(2) 0:(—1/z) = (—i2)20:(2).

Proof. Theorem 7.1.2 {10]. O

Let z(z) = 65(3) and y(z) = 64(5). We then readily have the transfor-
mation formulas using the above theorem.

COROLLARY 5. For all z € §,

(5) 62(z+4) = ~05(2) (i) 02(—2/2) = (—iz/2)7y(z)
z(z +2) = y(2) z(~1/z) = (=2iz)*z(4z)
(2 +4) = 2(2) (—4/2) = (—iz/2)}z(2)
y(z+2) = 2(2), y(z+4) =y(2) y(=1/2) = (=2iz)26,(22).

THEOREM 6. z(2),y(z) € M, (I'(4)).

Proof. First, we will show the slash operator invariance by making
use of the idea from [3], p. 148. For v’ € Ty(4) and z € H,

(2.1) O(v'z) = j(v, 2)0(2)

) 3], Note that v € T'o(4) and
z(yz) = O(F) = ©(y' - £) and, by (2.1),

= m
=3
W
g
=
f-on ol
‘Q\
|
2
-3
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This implies

(2.2) z(vz) = j(v,2)z(2),
which means that x| y = z(z) for any v € I'(4). For the case y(z), put

T = (}1) as usual. Then by Corollary 5, y(2) = z(z + 2) = =(T?2).
Smce I‘(4) is a normal subgroup of I'(1), one has T~2I'(4)T? = I'(4). For
=(2b)eT(4), put ¥ =TT 2= (4% ) € ['(4). Then,

y(v2) = =(T"y2)
= o(THT*/T*)z) = 2(v'(T*2))
=37, T*2)z(T"2) by (2.2)
=(d 2C>\/cz+2 Y+d—2c-y(2)
= <d 20) Vez +d - y(z).
To get the identity y(vz) = j(v, 2)y(z), it remains to check that

(2.3) ( ¢ 26) = () for (ﬁ Z) € T(4).

Write ¢ = (—1)*™)2" . ¢’ where ¢ is not divisible by 2 and ¢ > 0.
Since d — 2c = d mod 8, we have (=) = (3) and (%) = (§)-
Thus it suffices to show (3%:) = (). From the generalized quadratic

reciprocity law ([3], p. 153), we recall that (¢) = (-1)% () if c or
d is positive. Indeed, since d — 2¢ = 1 mod 4 implies ( df2c) = (g;’_zc)
= (g) = (%) . Next, we check the cusp conditions. We saw in §1 that
there are six I'(4)-inequivalent cusps 00,0,1, -1, -2, 3.
(i) s = o0t

From the definitions of z(z) and y(z)

z)=Zqu=l+QQ4+2qf+2qg+
neZ

y(z) = > (-1)"gy =1-2q +2qf — 2] +
neZ
and so z(o0) = y(o0) = 1.
(ii) s =0:
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Take £ = (S, /z) with S = (9 3'). Observe that £oo = 0. Then
zlig, = 2(S2)Vz
= (—2iz)22"2z(4z) by Corollary 5
1

so that we conclude

2(0) = lim alg, = (~24)*.

2400

Similarly

ylig, =¥(S2)Vz "
= (—2iz)%z‘%02(22) by Corollary 5
n+d)
(=20t Y g

neZ

= (~20)8 3 g’

neZ
= (=20)2(2qs + 2¢0 + 2¢2 +...),

hence y has a zero of order 1 at 0.
(iii) s = 1:

Take £ = (ST1S,v/—z — 1). Then £oo =1 and :v|[5]% = z(ST15z) -
v—2z—1". It follow from Corollary 5 that z(Sz) = (—2iz)tz(42),
2(ST'2) = (—2iz+2i)2z(42), and z(ST152) = (21 +2i)%(—i§)€1’x(z)
= (1 + 2)2z(z). Hence, zlg, = 1+ 2)3 (14 2)"2z(2). As 2z —
100, we have that z(1) = 4. On the other hand, we have ylm% =

y(ST-'Sz)v/—z —1 . Meanwhile, we know again by Corollary 5 that
y(Sz) = (—262)20,(22), y(ST'2) = (—2iz + 20)20,(2z — 2) = (=2iz +
2i)2(—i)6,(22), and y(ST1S2) = (—i)(1 + 2)*y(z). Thus we come up
with y|[§]% = (=3)(1 + 2)3 (1 4+ 2) " 3y(z). As 2z — do0, y(1) = —1.
(iv) s = —1:

Take £ = (STS,v/z—1). Then oo = —1 and z(STz) = (—2iz —
2i)2x(42), z(STSz) = (2 - 2i)%(—i§)§x(z) = (1 — z)2z(z). Therefore,
xl[ﬂ% =i71z(2). As z = 100, £(—1) = —i. Similarly, y(STz) = (—2iz —
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21)116(22), and y(STSz) = (1 — 2)*y(z). Hence, ylig, = y(2). As
2 = 00, y(—1) = 1. ’
(v) s =—-2:

Take £ = (T725, /z). Then €00 = —2 and (T 22) = z(2—2) = y(2),
o(T7252) = y(—3) = (—2iz)26,(2z). Therefore, a:|[5 = z(T Z‘S’z)z‘15
= (=2iz)22710,(22) = (—20)7 6(22) = (—26)%(2q4 + 2q4 +2¢B+...).
It then follows that x has a zero of order 1 at —2. In a sunlla.r way,
y(T7%2) = y(2—2) = x(2) and y(T252) = z(-1) = (—2iz)2z(4z). This
yields that ylig, = (—26)72(42). As z — ic0, we have y(—2) = (=23)%.
(viys=1

Take g = (8T8, \/—_2?—— ). Then z(ST~2z2) = (—2iz + 4i)*z(42)
and 2(ST*S z) = (2i! +4i)? (=i 2)*:r:( z) = (1+22)2z(z); hence x|[§]% =

i"'z(2). As z > ico, z(}) = —i. In like manner, y(ST~2z) = (—2iz +
41)20,(2z — 4) = (=2iz + 4)(=1)05(22), y(ST252) = —(1 + 22)}y(2).
Therefore y|ig, = —i7'y(z). As z = ioo, we have y(3) = 1. O
Put
. z(2)

z) = —=
"D =)

= 14 4qq + 8¢4> + 16¢4° + 32¢4* + 56¢,° + 96¢,° + 160q," +

THEOREM 7. K(X(4)) = C(j4) and j, has the following value at each

cusp: Ga(00) = 1, 54(0) = 0o (a simple pole), ja(1) = i, ja(~1) = i,
ja(=2) =0 (a 31mple zero), J4(%) = -1

Proof. First, we claim that for f(z) € M,
In fact, if v € I'(4) then we have f |m f ). This is equivalent to

flyvz) = f(2)i(7,2), that is, f(yz) = f ) (§) eg'Vez+d = f(2)(8)
Vicz +d since d = 1 mod 4. Squaring both sides, we have f%(yz) =
f2(z) - (cz + d) for any v € ['(4). Therefore f2 € M,(I'(4)). Thus by
Theorem 6 z%(z),y%(z) € M,(I'(4)). Meanwhile, we saw in the proof of
Theorem 6 that each of z(z) and y(z) has a simple zero at only one

cusp. Observe that for f € My(I'(NV)), the sum of zeros is v(f) = ‘—‘I‘Tk

where py = [T : T(NV)]. It then follows that vp(z?) = v(y?) =8 =

2. Since z? and y? already have a zero of order 2 at cusps, they have
no zero in §). This asserts that deg(js)o = 1, and hence [K(X(4)) :

g()) *(2) € My(T'(4))-
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C(js)] =deg(js)o=1. The second part is immediate by definition and
Theorem 6. O

PROPOSITION 8. The cusps of I'(4) are regular in the sense of half

integral weight forms. (for definitions and notations, refer to [3|, Ch.
V)

Proof. We know that if f(z) € M%(f(4)), then f(s) = 0 for a k-

irregular cusp s. Since z(z) and y(z) belong to M; (f(4)), if a 1-irregular
cusp s exists then we must have z(s) = y(s) = 0. We saw, however, in
the proof of Theorem 6 that such a cusp does not exist. a

Alternative proof of Proposition 8. At oo, we readily see that & =
1, h =1andt = 1. At 0, take & = (({75 )f)sothat&‘l—
((%5),—iv/z). Weneed'(4) 3£ ((51),0)67 = ((L1Y), —itvhz =1),
which is valid when h =4 and ¢t = 1.
At the cusp 1, take @ = (1% ) and € = ((Z19),vV—-2-1) so0
that ¢! ( L 9%), vV2—1). One must choose h = 4 to obtain
a(fh)at = (5% ") € T(4). To find ¢t we compute £((§4),)¢!
= (( :ﬁ‘é), tv/—4z + 5), which implies j(( 23¢),2) = tv/—4z + 5 pro-
vided that ¢ = 1. Therefore 1 is regular.
At the cusp —1, take @ = (1 %) and§— (G \/z————) so that
E1=((14), v=2-1) TOgeta( 1ot = ( f;f‘ ») €T(4), one
must take h = 4. For ¢, compute &(( § ) )1 = (( 5 ) tv/—4z - 3),
which gives j(( 5 %), 2) = tv/—4z — 3 provided that t = 1. Thus —1
is regular.
At the cusp —2,take a = (2 ¢ )and &€= (( 2 3),vV2); hence =
(% %),vV=2-2). Tohave a( {4 )ot = (112 % ) € T(4), one is
to take h = 4. For t, compute £((§4),8)¢ = ((5%19), t\/—4z -7
which implies j(( 2 16 %),2) = t3/—42z — 7 provided that t = 1. Hence
—2 is regular.
Finally at the cusp 1, take o = (2} % ) and £ = (2} %), v=22—1)
so that £ = ((3' % ),v22—1). To have a(} ) = (R 1f2h)
€ F(4) again one choose h = 4. To find ¢, compute E((34),t)¢!

(%3), tv/=16z+9). This glves J((58),2) =t/=16z + 9 when

t= 1 which amounts to say that 1 5 is regular.
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3. Structures of M;(I'(4)) and Si(T'(4))

We recall from [10] and [14] the following facts:

FAcT 1. For k > 2 and I'' a congruence subgroup of I'(1), we have
dim M(T")
g+o(I") -1 (k=2)
— k=g =)+ 5 0(D) + T0y [H50]  (k even)
(k—1)(g— 1) + % 4 ¥kl | S~ 1[—“’] (k odd, — 1 ¢ T")
where g is the genus of I'\$)*, 0w (") the number of I"-inequivalent
cusps, e,...,e, the orders of inequivalent elliptic elements of I' and u

(resp. u') the number of inequivalent regular (resp. irregular) cusps of
I

dim Mi(I") — 0,,(I") ifk>2
dim Sy(I") = { ¢ ifk =2
0 otherwise.
For k=1 and I" = T'(N),
dim M;(T(N)) = 2%1{[- with py = [T(1) : T(N)], ifu> 29— 2
dim $)(I'(N)) =0 for3< N <11.

FACT 2. Let X(2) = 6,"(2), Y(2) = 65*(2) and A(2) = FJ. Then
X,Y € My(T'(2)) and K(X(2)) = C()).

THEOREM 9. (i) Fork > 1, dim M3(I'(2)) = k+1 and dim Sy(I'(2)) =
k—-21ifk >3

(ii) Mok (T(2)) is spanned over C by k+1 functions X*, X*¥-'Y,... Y*.

(iii) Sy (['(2)) is spanned by k — 2 functions As X*73, Ap X*72Y, ...,
AyY* 3 where Ay = XY (X - Y) € Sg(T'(2)) and k > 3.

Proof. If I" = T'(2), we have ¢ = 0,0, = 3, ¢; = 0 for all ¢, u = 3,
and p2 = 6. Then (i) follows from Fact 1. Now, consider (iii). Note that
A(00) = 0, A(1) = oo, and A(0) = 1 imply that A, is a cusp form. For
any f € Mg(I'(2)), the number of zeros of f is

-6 6-6
(3.1) wf) =B =>=3
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Since A, is a cusp form, 1p(A;) > 3. But, it follows by (3.1) that
1(Ag) = 3. Also, all zeros of A, appear at the cusps, which means
that Ay(z) # 0 on $. Observe that each function stated in (iii) is in
S5:(['(2)) and the cardinality is the same as dim Sox(['(2)). Therefore it
is necessary to check their independency to justify (iii). Suppose that

k-3
Z C,‘AQXIC_:;'iYi =0 for c € C.

i=0

Since A,Y*-3 never vanishes in $, dividing the above by A,Y*~3, we

have
k-3
E C,‘/\k_B—l =0.
=0

Since X is transcendental over C, ¢; = 0 for all ¢. (ii) can be proved in
a similar fashion. 0

THEOREM 10. (i) dim My (T(4)) =2k+1 fork > 1, dim Sg(I'(4)) =
2k — 5 fork > 3.

(ii) Mx(I'(4)) is spanned over C by the functions %, z%*~1y, ... y?*.

(iii) Let Ay = zy(z' — y'). Then Ay € S3(I'(4)) and for k > 3,
Si(I'(4)) is spanned by Aqx® =6 Ayx® Ty, ... Ay?*5.

Proof. f I" =T'(4), we have ¢ = 0, 0o = 6, ¢; = 0 for all i, u = 6,
and p4 = 24. Then (i) is immediate by Fact 1. We consider (iii) because
(i) can be handled in a similar way. By Theorem 6, the functions
* mentioned in (iii) belong to M;(I'(4)). Since y(0) = 0 and z(-2) = 0,
A4(0) = Ay(—2) =0. And

(3.2) — = ja(ji — 1).

If s # 0,—2 then j4(s) is a 4-th root of unity. Also, for s # 0, y(s) # 0.
Hence, by (3.2), A4 is a cusp form. For any f € M3(I'(4)), the number
of zeros is

_ M43
(3.3) w(f)==3=6

Since Ay is a cusp form, 1p(A4) > 6. But, by (3.3), n(A4) = 6 so that
A4 never vanishes on $. Now, all functions in (iii) are in Si(I'(4)). It
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remains to check that they are linearly independent because the cardi-
nality is equal to the dimension of Si(T'(4)). Suppose that

2k—6

ZQ‘A -5yt = 0 for ¢; € C.

Since A4y**~® never vanishes on $), dividing the above by Asy*~%, we
have
%6

(34) Z 01]2’6 —6—i _

Here we have to show that j, is transcendental over C. Choose any ¢ € C
and consider j, — ¢. Since j4 — c is a nonconstant modular function, it
has at least one zero. This implies that the image of j, is all of C. But if
we had an algebraic equation satisfied by j4, then the image of 7, would
be mapped into the set of solutions of the algebraic equation which is
at most a finite set. This is impossible. Therefore ¢; = 0 for all ¢ in
(3.4). O

REMARK. For any & € N, My (T(4)) = M(T'(4)). Indeed, for 7 =
(¢2) €T(4),

jly,2) = (2) Vez+d since d =1 mod 4.

Since k is even, j(v,z)¥ = (cz + d)?, that is, M (T'(4)) has the same
automorphy factor as that of My (T'(4)). )

Before going further we will show the algebraic independency of z(z) -
and y(z). To this end, we need the following lemma.

LeEMMA 11. If fy+ feo1+-- +fo—0wherek€Nandfz€M%(F( ))
fori=0,...,k, then fy=0forallt=0,..., k. i

Proof. Fix an arbitrary point z € $. Put 3 = (47) for ¢ =
0,....,k+ 1. Then j(v,2) = (%) V4iz+1 = /4iz+1 are distinct.
By the assumption,

Fe(vi2) + friea(iz) + -+ + fo(viz) = 0.

Since f; € M; (F( )) fori =0,...,k, we have

2

3 (i 2)* fie(2) + (0, 2)F fom1(2) + - + fo(2) =0
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fori=0,...,k+ 1. This gives rise to the following linear system
i)t G 1\ [ fl(2)
Jv ) jlmz) 1| [ fia(®) ] .
j(’)/IH-le)k j(7k+17z) 1 fo(Z)

Note that the determinant of the above system is the well-known Vander-
monde determinant, which is nonzero because j(7;, z)’s are all distinct.
Hence, fi(z) = 0 for each i. Since z is arbitrary, f; = 0 for any 1. a

Now, suppose that there exists a polynomial F' € C[Xi, X,] which
is satisfied by z(z) and y(z). By Theorem 6 and Lemma 11, we may
assume that F' is homogeneous. Let deg F' = n. Then,

F(Ia y) i -k
—— =) wjs =0
y k=0

for a;, € C. Since j4 is transcendental over C, it follows that a; = 0 for
any k; hence F' = 0. This guarantees the algebraic independency of z
and y.

THEOREM 12.
1
X(z) = 6:(2)" = 7(a* - 22°" + o)

1
Y(z) =63(2)* = Z(z‘l + 227 + ).

Proof. Note that oo is equivalent to 1, 1 ~ —1 and 0 ~ —2 in the
curve I'(2)\H*. Thus 6,*(c0) = 0 implies 6,*(3) = 0. Also, 85*(1) = 0
implies 83*(—1) = 0. Considering the values of z and y at the cusps, we
obtain

1
(z" = 22"y +y")(00) =0 (z* - 2"’ +4')(5) =0
(z* — 22%* +y")(1) = 0 (z* ~ 22%% + y*)(—1) = 0.
Let us recall that for f € M5(I'(4)), the number of zeros is
g -2

. = =4

(3.5) w(f)=—1]

Since 8,* (resp. 65') has a zero of order 1 at co (resp. at 1) in g
expansion, it has a zero of order 2 in ¢ expansion. Meanwhile, (3.5)
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shows that vo(6:*)= vo(f5*) = 4. Hence it turns out that they have no
other zeros except those mentioned above. On the other hand, it follows
from the equality (z* £ 2z%y% + y*) = (2® £ »?)? that they have zeros
of even order. Ag:iin by (3.5), they have no other zeros except those.
Therefore —4———?—2— has no zeros and no poles, which claims that
zt — 222y + yt
the quotient is a constant. We use the transformation formula for 6, in
Theorem 4 and Theorem 6 to get that 6,*(0) = —1 and (z* — 22%% +
y*)(0) = ((—2i)2)* = —4. Hence, the constant should be 1. Likewise,

1
we can show the other case. O

THEOREM 13 (Extended Version of Theorem 10). (i) For k > 1, dim
M%(f(4)) =k+1 and M%(f(4)) is spanned by z*, z¥"ly, ... y* that is,
it is the space of all polynomials in Clz, y] having pure weight %

(ii) For k > 6, dim S%(l:(4)) =k — 5 and Sé(f(4)) is generated by

AzF 8 Ay* Ty, ..., Ayy* 5 with A4 as in Theorem 10.

Proof. For (i), it is enough to consider the case £ ¢ N. Note that

z*, 2%y, ..., y* are linearly independent and belong to M:(I'(4)) due

to Theorem 6. Let o € My (['(4)). Then, a -z € Mui(I'(4)). Since
%—1 € N, by Theorem 10, we obtain

(3.6) a7 =cor™ +ezfy + -+ eyt

for ¢; € C. Now, evaluate the above at the cusp s = —2. Then z(-2) =0
and y(—2) # 0 give cx41 = 0. Since z(z2) # 0 on §, we can divide the
both sides in (3.6) by z. Then a € Cz* + --- + Cy¥, from which (i)
follows. (ii) can be similarly proved. The only nontrivial part is that
Agz* 8 AyzF Ty, ..., A" span Sg(f(4)). Let 8 € Si(I'(4)). Then

Bz € Mg (f(4)) Since k%l is an integer, it turns out that

(3.7) Bz =A™+ + s Agy

for ¢; € C. Comparing the order of zero at —2, we see that all terms
except cr_sA4y?*~® have the orders greater than or equal to 2. But
the term c;_sA4y*° has the order 1 at —2, which forces us to have
ck—s = 0. Dividing the both sides of (3.7) by z, we come up with 8 €
CA "5+ .- + CAyFS. |
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ExAMPLE. Define

Zq (z € H).

nez

Then © € M, (To(4)) (3], p. 184). Hence, © EM: (I'(4)) and, by Theo-
rem 13, it can be written as a linear combination of z and y

(3.8) © =ax + by

for some a,b € C. Observe that ©(co) = 1 and ©(3) = 0 because 3 is
a l-irregular cusp of I'y(4). Evaluating (3.8) at the cusps oo and 3, we
geta="5b= % Therefore the result is

1 1
@—5.’17'1—51/.

Before closing this section we try to find the relations between j, and
the classical modular functions J and A.

THEOREM 14. (i) We have
gt =2+ 1
IAREIARS
and the irreducible polynomial of j, is Z* + 23 2% + 1€ C(\)[Z] over
CN)(= K(X(2)))-
(ii) Let J be the classical modular function of level 1 with J(i) = 1.

Then one has
1 (Ga® + 1454 +1)3

" 108 (ja° — ja)*
and the irreducible polynomial of j, over C(J) is (Z8 + 14Z* + 1)3 —
108J(Z° — Z)*e C(J) |Z).

Proof. In (i), the equality of A follows from Theorem 12. Observe that
[K(X(4)) : K(X(2))] = [[(2) : T(4)] = 4.

Hence, deg(Irr(jy, C()))) = 4. Clearly, j, satisfies Z*+23+ Z2+1. Thus,
the two polynomials are the same. Since

4 (A2-x+1)p
27 A(A-1)2
({10], p. 228), plugging (i) into the above we come up with the equality
in (ii). Now, K(X (1)) = C(J), K(X(4)) = (C(j4) and
[K(X(4)) : K(X(1))] = [[(1) : T(4)] = 24.

J_.
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And deg(Irr(js, C(J))) = 24. By the same reason as in (i), the second
part of (ii) follows. O

For z € Q(v/—d) N $H (d > 0), it is well-known that j(z) (= 1728J(2)) is
an algebraic integer ([6], [14]). For algebraic proofs, see [2], [7], [13] and
[16]. Therefore it is natural to ask whether jy(z) is so or not. Although
we have Theorem 14 at hand, the answer for the above question seems to
be negative because the modular function J(z) has no Fourier expansion
of the form ¢7'(1+ 3, ang™). To support the above claim, let us find
a counter example as follows. Observe that

6o sa=} (6(5)-0 (),

(3.10) 63(22) = (93( )+ (3)

LeMmMA 15. (i) Forz € R+, Ja(zi) > 0.
(11) For z € 9, j4(2z)2 = %(]4(2’) +j4(Z)_1).
e () w1

)= Nu{0}.
(T’u) ].4(271) ]4(21'21)_1 Orne U{ }
(iv) ja(22)* = 55

2iy,,2

Proof. Tt follows from the definition that 6;(Z) = Y, em™2)" =
S ez e~ > 0. And by Theorem 4 (ii) and (3.9), 6, (%) = 6, (-Z) =
(~i2)} 6, (2) = /2 1 (65 (£) — 64 (&) > 0. This implies (i). For the
second, we readily get that
05(2)" _ 63(3)° + 6u(3)°
0u(2)2 ~ 265(3) 6a(3)

= 3 Gule) +3a(a) ™)

Finally, for n € NU {0}

(2)-22

04(=
_03(274) + 64(2"%)
(2 12) B4(2714)
ja(2™) +1
Ja(27) = 1

ja(22)? = by [10], Theorem 7.1.8

) 9 (2n+1 )
) 02(2n+12)

by Theorem 4 (ii)

by (3.9) and (3.10)

]4 2"1)
T s ) —
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. 4 ) .
Also, j4(22)* = 3284 = 93(2(;2(_;2(;)4 = 1-,1\(1)- This completes the
lemma. O

In Lemma 15 (iii), let us take n = 0. Then we come up with j4(3) =
14 /2. By Lemma 15 (i), 54(¢) > 0 and so

(3.11) Ja()) = 1+ V2.

Applying again Lemma 15 (i) and (ii) we obtain that j4(2i) = v/2 and
Ja(48) = 4/ M We claim at this stage that j4(47) cannot be an

algebraic integer. Suppose that js(47) belongs to the ring O of algebraic
integers. Then

1
——%1» € 9, which implies 75 € O because {/ V2+1e 9%

We conclude from the above that

1\ 1
— )} ==
(832) 32EE ’

which is a contradiction. Therefore js(4¢) is not an algebraic integer.
In order to overcome this obstacle we borrow the notion of normalized
series from Conway-Norton’s paper ([1]).

THEOREM 16. Let N(j4)(z) = méﬁ” = q%+0+2q43—q47—2q4“+
3¢s"® + 24" + - -+ be the normalized generator of K(X(4)). Then for
7 € Q(v—=d) N9, N(js)(7) is an algebraic integer.

Proof. Let j be the modular function whose Fourier expansion with
respect to ¢ is % + 744 + 196884¢ + ---. Then j(7) is an algebraic

integer for such 7. Note that J = 1—7'2L8. By Theorem 14, we see that
J= ﬁ%ﬁ—)a Hence, substituting 725 + 1 for j,, we obtain that
— 24 . (j48 + 14j44 + 1)3
(ja® — 7a)*
(N8 4 224N* + 256)3

= V- 2)iNA(VE 2N 1 aN e e V= NGa(r)-
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This implies that N(j4)(7) is integral over Z[j(7)] and hence N (j,)(7) is
integral over Z. 0O

4. Examples

Theorem 13 implies that any f in M (T(4)) is a homogeneous poly-
nomial in z and y whose degree is k. Furthermore the polynomial ex-
pression is unique due to the algebraic independency of x and y. In this
section we will describe the modular function j,; in terms of gp-division
values and Fricke functions. First, we recall the definition of the N-th
division values of p:

aT+a
pna(T) =p (—I——N-—Q Lr)

where @ = ( g ), L, = Z7+Z and p is the Weierstrass p-function. Since
p(u; L) = p(v; L) if and only if v = +v mod L, we see that

(4.1) Png=py; & G=b mod NZ
Now, define the reduced p-division value pynz* by
* J2 d
(42) R D DR
t mod N d>0, dt=1 mod N

where @ runs mod N with (a;,a;) = 1 and p is the Mobius function.
Then we have py;* € M(I'(N)) and at the cusps of I'(NV)

¢
N2
Ox(XN)

2 N? . d » . as
(-4) = {N ooy (s I'(N)-equivalent to —%,

4.3 i
( _ ) e, otherwise.

For the standard facts mentioned above, we refer to [11], p. 171. By
theorem 13, g45* is a homogeneous polynomial in z and y of degree 4.
Thus we can write g4 as follows:

p15" = oz’ + a7’y + 0’y + ey’ + gy’
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for ¢; € C. Using (4.3) and the values of x and y at the cusps of I'(4)
(see Theorem 6), we can determine the coefficients ¢;. In fact,

1
= — 0,70
¢o = —z4a (0)
1 . 1 . 1., |
&1 = 700a" (00) = 7pua (3) - JPsa (=) + Jipaa™ (1)
Cy = lp **(OO)+lp4 ¥ (l) +.];p ..*(O)..{..lp _.*(_2)
9 4,0 2 a 2 4 4,d 4 4,8
1o, [ L. L.,
€3 = 704a"(00) = Tpua (3)+ 2Paa" (=1) = Zipaa’(1)
1.
Co ==, p1a (-2)

with ¢ = v/—1. Recall that there are 6 distinct reduced p-division values
which correspond to the cusps of I'(4). They are as follows:

2 2
s = 00, Py (0 = Szt + 45’y + 7%y + 42yt + Syt
Al 3 3
., 10, 2
5=0, Pa()) —?x4+§y4
s=1 P, -1\ = 2$4 + diz’y — 42y® — dizy® + —2-y4
’ +(7') 73 3
2 2
s=-1, Pu(1) = 5:104 — digy — 42y + dizy® + gy"
. 2, 10,
PETR L e(y) Tt TRy
§= L P, -2\ = gx" — 4%y + 4z%y® — 4z + gy4
2’ +«(7) T3 37

Using the above result, we get

Pa(3) ~ 0a (9 _ —dzt — 42y — 42%y? — 4z
Pa( 1)~ Pa(0) —4xdy — dx?y? — 4oy® — 4yt

~4z(x® + 2%y + zy? + y°)
—4y(z® + 2%y + zy® + y°)

= ~ = jy.
y

In this way, one can have a field generator of K(X(4)) in terms of reduced
g-division values.
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REMARK. (Generation of j,; with Fricke functions)  Recall the def-
inition of Fricke function f,, ,, where (a;,a;) € Z? and both a; and a,
are not multiple of N ([6], [14]). Then,

G
fal,ag = “‘27 . 35 fﬁ PNG with @ = ( 2; ) .
Pa(1) —0400)
From the equality js = (o) 4(4 )* and (4.2), it follows that
0
1

Pa(d) T Pa(9)

d
— Zt mod 4(Zd>0,dtsl mod 4 %) (ft,O - fO,t)
Zt mod 4(Zd>0,dt51 mod 4 %(?"-er))(ftﬂt - fO,t)

In the above, consider the summation Y, 0 s=1 mod ¢ %‘_ﬁ. Note that

when t = 0,2 there is no d satisfying the congruence equation dt = 1

d d
mod 4. Now put @ = 3 .0 ti=1 mod 4 %’l and b = > 400 =3 mod 4 %

Then in (4.4),

(4.4) Ja

fio — fo1) + b (fz0 — fos

jo= 2 )
a (fiz— fo1) +b(fss — fo3)
_a(fio— fo1) +b (fip — fo1)
" a(fiz— fo1) +b (fiz — for) by (4.1)
_ fio— foa
fiz — for

Lemma 17. For n even, let f € Mz(I'(4)). If f has a Fourier expan-
sion with rational coefficients, then it can be written as a homogeneous
polynomial over Q in x and y whose degree is n.

Proof. By Theorem 10,

n
(4.5) f= Zajx"”jyj, a; €C.
=0
We must show that each a; lies in Q. Considering Fourier expansions of
f and "7y’ gives

[}
f=) bg, beQ
i=0

o o]

i :

T ]?JJ=E ¢ijgs, € €Q.
=0
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Plugging (4.5) into the above and comparing the coefficients of g4-expansion,
we get the following linear system:

Go

(4.6) (cij)izo, oi<n | 1] = (bi)iZO :
an

Note that the j-th column of the matrix (c,-]-) corresponds to the Fourier
coefficients of z"7y/. Since 2", 2" 1y,...,y" are linearly independent
over C, the matrix (c,-]-) has rank n + 1. This allows us to choose n +1
rows from (Cj]‘) which are linearly independent. Without loss of gen-
erality, we may assume that the matrix (c,-]-) 0<ij<n is invertible. Now,
instead of (4.6), consider the following system:

Qo b

(c"f)OSi,an =1:

an bn
Multiplying through by the inverse of the matrix (c,-j)o cijen W€ have
ag,...,a, € Q as desired. T O

THEOREM 18. Q(js) coincides with the field F, of all the modular
functions of level 4 whose Fourier expansions with respect to q4 have
rational coefficients.

Proof. By [14], Proposition 6.9 we know that Fy = Q(J(z), J(42),
f10(2)). Since z and y have rational Fourier coefficients, so also has
js. Hence, Q(j4) is contained in F;. For the reverse inclusion we need
to show that J(z),J(42), fie(2) € Q(js). From Theorem 14 (ii) we
see that J(2) € Q(js*(2)), and so J(z) € Q(js). Next, observe that
J(42) € Q(js*(42)) = Q(5H). To claim J(4z) € Q(jy), it is enough
to show that z*(4z) and y*(4z) are homogeneous polynomials over Q
in z and y of degree 4. By an example in §3, we obtain 1(z +y) =
03(2z). Simple calculation leads us to 1(z — y) = 62(2z). Therefore,
2 (4z) = 65%(22) = L(z +y)* and y*(42) = 0.(22) = 65*(22) — 6,%(22) =
5(z +y)* — I(z — y)*. Finally, we consider the Fricke function f)o(z).
Recall that f;o = —27- 35Q*A—Gﬁp4y( 1y As is shown in the proof of [14],
Proposition 6.9 or [11], pp. 169-170, 7r‘2p4’( 1) has rational Fourier
coefficients. On the other hand 774Gy, 778G and #~12A have the same




926 Chang Heon Kim and Ja Kyung Koo

property. Furthermore, they can be viewed as modular forms of level 4.
Thus, by Lemma 17, they can be written as homogeneous polynomials
over Q in = and y. This implies that f,¢(z) € Q(js). O

5. Application to quadratic forms

LeEmMA 19. (i) Let f € My (I(1)). Then f is a symmetric homoge-
neous polynomial over C in z*(z) and y*(z) whose degree is k.

(i) Let g € My (['(2)). Then g is a symmetric homogeneous polyno-
mial in z?(z) and y*(z) whose degree is 2k.

Proof. By Theorem 9 and 10,
(5.1) f(2) = p1(X(2), Y (2)) = pa(2(2),y(2))

where p; and p, are homogeneous polynomials in two variables with deg

p1 = k and deg p; = 4k. We claim that p; and p; are symmetric. In
fact,

pi(X,Y) = f = flisrs), since f € May(I'(1))
= p1(X|[s78),» YlisTsp,) = p1(Y, X) by Theorem 4 .
Also,

p2(z,y) = f = fliy,, since f € My (I'(1))
= po(x(z + 2),y(z + 2)) = p2(y, z) by Corollary 5 .

Recall from Theorem 12 that X = (2 — y%)? and Y = (2 + 3%).
Substituting z for  and —y for y we see that X and Y are unchanged.
This implies by (5.1) that py(z, —y) = pa(z, y), that is, p, involves terms
whose degree of y is even. Also, substituting « for  and iy for y, X and
Y interchange with each other. Since p; is symmetric, by (5.1) we have
pa(z,1y) = pa(x,y), i.e., ps has terms whose degree of y is a multiple of 4.
In the case of (ii), p, is symmetric and the equality ps(z, —y) = p2(z,y)
still holds. The assertion follows from these facts. a

For p(z) € Clz], we call p(z) symmetric if p(z) = z*p() with k =
deg p(z).
COROLLARY 20. (i) Let fi, fo € My (I'(1)). Then,
hz) _ pUs(2))

£(2)  a(Gd(2))
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where p and q are symmetric polynomials in one variable whose degrees
are less than or equal to k.
(11) Let 91,92 € MQk(F(2)) Then;

91(2) - p(jd*(2))
9:(2) 4G’ ()

where p and q are symmetric polynomials of degree less than or equal
to 2k.

Proof. Obvious. O

Now, we will consider the theta series associated to quardratic forms. Let
Q(n, 1) be the set of even unimodular positive definite integral quadratic
forms in n-variables. Then n = 0 mod 8 ([12], ch.V). For A[X] in
Q(n, 1), the theta series defined by

Oa(z) = D e (2 € 9)
Xezr

is a modular form of weight 2 and level 1. In cases n = 8 and 16, the
quotients gj are 1 for A[X], B[X] € Q(n,1). If n > 24, then we have
the following theorem.

THEOREM 21. For any two quadratic forms A[X], B[X] € Q(n,1),
04(2) _ plya(2))

Op(2)  q(4a(2))

where p and q are symmetric polynomials over Q in j, of degree n.

Proof. From Lemma 17 and Lemma 19 we see that 64 and 0p are
symmetric homogeneous polynomials over Q in z(z) and y(z) whose
degree is n. In both cases the coeflicients of the term 2" do not vanish
because 64(0) = 05(0) = 1, z(0) # 0 and y(0) = 0 by Appendix A. Now
the result follows. g

6. Examples

In case n = 24, we are able to completely determine the polynomials
discussed in Theorem 21.
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LEMMA 22. Let Eg be the Eisenstein series of weight 6 of level 1 with
Eg(00) = 1 and F = (27)"'2A where A is the modular discriminant.
Then we have

1 33 33 , 1
E— — 212 e 8 L 1o
= 5" TetV te®Y Y

1
F=ope ahyt(z! — )t

Proof. By Lemma 17 and Lemma 19, Fg can be written as
Es = az" + bz®y* + bz'y® + ay™?
for some a,b € Q. Evaluating both sides at some cusps of I'(4), we will
determine a and b. First, at s =0, 1 = E(0)= a-z(0)?= a- (V/—-24)12=
a-(—64); hence a = —F;. Next, at s = 00, 1 = Eg(co)=a+b+b+a=
2-(—a) + 2b and hence b = £. Now, consider the case of F. As is well
known ([10], p. 222), we have the following equality:

F = 0,500

%X2Y2(Y X)? by the relation 6;* = 6,* + 6,* and Fact 2
11
= 9844 —(a* —y*)*(«*")* by Theorem 12

1
— Eﬁz y4($4 _ y4)4.
This completes the lemma. |

PROPOSITION 23. For A € Q(24,1),

04(2) = a%a® + (2ab + S2)a®y" + (5 + 2ab — Z4)z'%?

+ (20 + 26% + ?;15 )z'2yt?

+ (0% + 2ab - zgm)az:gy16 + (2ab + 216):1:43120 + a’y*
where a = —4,b = 8 and g4 = ¢4 + BB = ra(l) + 1008 (€ Z)

depending on Niemeier’s class1ﬁcat1on ([8])

Proof. Since Ey; and F span M5(I'(1)), we can express
(6.1) 04 = Eia + caF = Eg* + g4F.
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By comparing g-expansion we get g4 = c4 + 7%?148. Now, plugging the

results in Lemma 22 into (6.1), we obtain the assertion. O

Appendix A
For 6 cusps of I'(4), we have the following table:

o0 1 -1 -2 %
X 0 -1 1 1 -1 0
Y 1 —1 0 0 —1 1
A 0 1 oo o 1 0
x 1 -21 -1 — 0 —1
y 1 0 -1 1 V=&
js 1 oo i —i 0 -1

Appendix B

From Proposition 23, the formula (9) in [4] and following Niemeier’s
notation,

03XE8(Z) = €Es®016(z) =

1 .24, 21 20,4, 591 16,8 , 707 12,12 , 591 8 16 , 21 .4.20 , 1 , 24
1006 T 50T Y Ta006T Y T 10T Y taoeel Y t2o:T Y T qos6Y
O, @ E: @ Dw(2) = O @ 4 (2) =

1 .24, 3,204 , 663,16, 8 , 85 12 12 , 663,8 16 . 3 ,4,20 , _1 24
w006 T3T U t 6T Y T 1T Yt a006T Y T 5% YTt q5Y

9024(7:):

1,24, 33 20,4, 495 .16,8 , 743 12,12 , 495 8 16 , 33 , 4,20 , 1 .24
1006% T3t Y T a0 YV T i5a% YV T ao06L Y T 30i% Yt a0g6Y
0012@[)12(‘2) =

1 24 15 20,.4 639 ,..16,,8 689 ,.12,,12 639 ,..8,,16 15 4,20 1 24
2006L Tt Y taeeT Y tT10u% Y taeet Y t T Y T weeY

03><D5(Z) =
\ .94, 9 .20 4, 687 .16,8 , 671 12,12 , 687 8,16, 9 4,20, 1 .24
1096 T ool Y taeel Y tTi0mZ Y taeel ¥ taom® Yt asY

009®A15(Z) =

1 24, 21 .20.4 , 675..16,8 5 1351.12,12 , 675 8,16 , 21 4,20 , 1 24
10067 T Y TaeeT Y Taomt Y it ¥ tTaowl Y T mesY
Osx5s(2) = Op, @ D an (2) =

1 .24, 15 20,4 , 699 16,8 , 1333,.12,12 , 699 , 8 16 , 15 4,20 , _1 24
096" T a096% ¥ T aseT Y Toos? Y tagel ¥ taoes® Y T mesY
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94><De(z) = 0D6®A9®A9(z) =
2_619_6$24+1632_41.20y4_'_%x16y8+%x12y12+%gx8y16+_1_03W$4y20+ﬁy24
00, @ D, 4: @ 4,(2) =
:16196124 + 4_0%61.20y4+ %xlﬁyS_'_ %%z12y12+ 47_029%1.83/16_._ :1_(_)%_6‘,1:4y20+ ﬁy%
03XA8(Z) =

717 ..16,.8 717 ,.8,,16

mx24+8§%$20y4+mx Y +§g%xl2yl2+mx Yy +§%x4y20+my24
9A24(z) =
E)Igg-'fv'%‘i‘§%$2094+f@2—916$16y8+%%xlzylz‘}’;%xsym'f'%$4y20+my24
9A12®sz(z) =
:1_019_st4+%$20y4+%x16y8+%x12y12+%$8y16+8;}%x4y20+ Fi,g?!n

Osxp,(2) = Op, praxas)(2) =

1 .24, 3 204, 135.16,8 , 653 ..12,12 , 735 .8,16 , 3 , 4,20, 1 2
T+ 552 Y T 2096T Y Y1024 Y T aoesL Yt maisT Y T s Y
94XA6(Z):

1,24, 15 20,4, 720 16,8 , 2621,12,12 , 729 8,16 , 15 420, 1 24
1096 THeel ¥ tage? ¥ tiet Y Tawwl ¥ etV T meY

06XA4 (z) =

ﬁx24+§]?9_2$20y4+4_'/;)%6_$16318+%%gg_$12y12+{%xsy16+rsz2x4y20+ﬁy24
08XA3(z) =
4(]196$24+E:;_6$20y4+%ﬁxlﬁys_i_%x12y12+%x8y16+:1_039_61’.4,!420_}_:‘&:1}24
612><A2(Z) =
11()1?$24+81%$20y4+%$16y8+38%1123/12_’_%1:8:’/16_,_§%§$4y20+my24
O2axa, (2) =

E15_6_‘,1:24 + %mlﬁys + ég_éxl2y12 + %xsylﬁ + ngéy24

0?)(2) =

.’L'24 3 $20y4+ 771 .16 8+1279 12,12 3 5134 20

_ 771 .8, 16 1,24
1096 1096 1096% Y T 3T Y "t a6 Y w56% Y T 056V
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