• Title/Summary/Keyword: k-corner

Search Result 902, Processing Time 0.028 seconds

Criteria for processing response-spectrum-compatible seismic accelerations simulated via spectral representation

  • Zerva, A.;Morikawa, H.;Sawada, S.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.341-363
    • /
    • 2012
  • The spectral representation method is a quick and versatile tool for the generation of spatially variable, response-spectrum-compatible simulations to be used in the nonlinear seismic response evaluation of extended structures, such as bridges. However, just as recorded data, these simulated accelerations require processing, but, unlike recorded data, the reasons for their processing are purely numerical. Hence, the criteria for the processing of acceleration simulations need to be tied to the effect of processing on the structural response. This paper presents a framework for processing acceleration simulations that is based on seismological approaches for processing recorded data, but establishes the corner frequency of the high-pass filter by minimizing the effect of processing on the response of the structural system, for the response evaluation of which the ground motions were generated. The proposed two-step criterion selects the filter corner frequency by considering both the dynamic and the pseudo-static response of the systems. First, it ensures that the linear/nonlinear dynamic structural response induced by the processed simulations captures the characteristics of the system's dynamic response caused by the unprocessed simulations, the frequency content of which is fully compatible with the target response spectrum. Second, it examines the adequacy of the selected estimate for the filter corner frequency by evaluating the pseudo-static response of the system subjected to spatially variable excitations. It is noted that the first step of this two-fold criterion suffices for the establishment of the corner frequency for the processing of acceleration time series generated at a single ground-surface location to be used in the seismic response evaluation of, e.g. a building structure. Furthermore, the concept also applies for the processing of acceleration time series generated by means of any approach that does not provide physical considerations for the selection of the corner frequency of the high-pass filter.

Treatment of Posteolareral Rotatory Instability of the Knee (슬관절 후외방 불안정성의 치료)

  • Kim, Jin Goo
    • Journal of the Korean Arthroscopy Society
    • /
    • v.15 no.2
    • /
    • pp.146-154
    • /
    • 2011
  • Injury of posterolateral corner is unusual, but it can cause disability due to severe instability and cartilage damage. However, the anatomical structures, diagnosis and treatment have not defined clearly yet. Posterolateral corner injury is regarded as the one of main factor to the results of failure in cruciate ligament reconstcution if it was undiagnosed and untreated. Diagnosis of postetolateral corner injury is consists of physical exam, radiographic finding, MRI, and arthroscopic findings. The treatment method of of postetolateral corner injury depends on the time and severity of injury. Anatomical reconstruction of posterolateral corner shows the better clinical outcome than non anatomical reconstructions, but the clinical results of long term follow up is still needed. Therefore, the aim of this article is to review the recent literatures and to organize diagnosis and treatment of posterolateral corner injury.

  • PDF

ISO 9705 Room-Corner Test & Model simulations (ISO 9705 Room-Corner Test와 모델 평가)

  • ;S.E. Dillom;J,G Quintiere
    • Fire Science and Engineering
    • /
    • v.13 no.2
    • /
    • pp.3-11
    • /
    • 1999
  • New examination of a predictive model for the ISO 9705 room-corner test have been m made for materials studied by L S Fire Laboratories, Italy. The ISO 9705 test subjects wall a and ceiling mounted materials to a comer ignition source of 100 kW for a duration of 10 m minutes; if flashover does not occur this is followed by 300 kW for another 10 minutes. The m materials that did not stay in place during combustion because of melting, dripping, or d distorting were simulated by an adjustment to the material's total available energy. For m mat려als that remain in place the simulation model appears to do well in its prl어ictions. A l large-s떠Ie room test results 뾰 compar벼 with the m여el’s prediction also.

  • PDF

Study on Circularly Polarized Micro-strip GPS Antenna (원형편파 마이크로 스트립 GPS 안테나의 연구)

  • Park, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3880-3884
    • /
    • 2010
  • In this paper, circularly polarized micro-strip GPS antenna has been designed and fabricated. In order to improve of frequency properties, patch size, corner truncated size and feed positions were simulated using HFSS simulation program. Micro-strip GPS antenna was fabricated on the FR4 substrate of dielectric constant 4.4. The fabricated GPS antenna has that center frequency is 1.575GHz and insertion loss is -34.50dB.

Die System for Avoiding Thickness Reduction along the Bent Corner in Warm Plate Forging of an Axle Housing (액슬하우징의 온간 후판단조에서 굽힘 변형된 모서리에서 발생하는 두께 감소 방지를 위하여 고안된 금형 시스템)

  • Kim, J.S.;Kim, K.S.;Shim, S.H.;Eom, J.G.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.447-451
    • /
    • 2010
  • In this paper, a useful die system for warm plate forging of a large axle housing of heavy-duty trucks is presented. A die system composed of material flow guide pin as well as upper die and lower die is proposed to reduce the inherent thickness reduction along the bent corner of the product which deteriorates structural strength and fatigue life in its service. The role of the pin assembled in the upper die is to prevent formation of sharp corner in early forming stage and to supply material in the lower die cavity sufficient enough to thicken the bent corner at the final stroke. The mechanism of the die system is given and its effect on corner thickness of the product is revealed by two-dimensional finite element analysis under plain strain assumption. Three-dimensional finite element solutions are also given to verify validity of the two dimensional approach and to show the mechanics of the die system in detail. The die system has been successfully applied to manufacturing the axle housing of heavy-duty trucks.

Shape optimization of corner recessed square tall building employing surrogate modelling

  • Arghyadip Das;Rajdip Paul;Sujit Kumar Dalui
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.105-120
    • /
    • 2023
  • The present study is performed to find the effect of corner recession on a square plan-shaped tall building. A series of numerical simulations have been carried out to find the two orthogonal wind force coefficients on various model configurations using Computational Fluid Dynamics (CFD). Numerical analyses are performed by using ANSYS-CFX (k-ℇ turbulence model) considering the length scale of 1:300. The study is performed for 0° to 360° wind angle of attack. The CFD data thus generated is utilised to fit parametric equations to predict alongwind and crosswind force coefficients, Cfx and Cfy. The precision of the parametric equations is validated by employing a wind tunnel study for the 40% corner recession model, and an excellent match is observed. Upon satisfactory validation, the parametric equations are further used to carry out multiobjective optimization considering two orthogonal force coefficients. Pareto optimal design results are presented to propose suitable percentages of corner recession for the study building. The optimization is based on reducing the alongwind and crosswind forces simultaneously to enhance the aerodynamic performance of the building.

Simulation of Interlinkage of Grain Boundary Gas Bubbles to Free Surfaces by the Monte Carlo Technique (몬테 카를로 기법을 이용한 결정립계 기포의 자유 공간으로의 연결 모사)

  • Koo, Yang-Hyun;Park, Heui-Joo;Sohn, Dong-Seong;Yoon, Young-Ku
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.374-380
    • /
    • 1994
  • A method to simulate the extent of interlinkage of grain boundary gas bubbles to the free surfaces of fuel pellet was developed. With the shape of UO$_2$gain treated as tetrakaidecahedron (TKD)), the interlinked fraction of fission gas bubbles to free surfaces at grain comers was calculated as a function of the radius of grain corner bubbles by the Monte Carlo technique. In spite of two dimensional analysis, the present method shooed reasonable agreement between predicted and measured fuel swelling at the moment that complete bubble interlinkage was achieved. However, for more realistic simulation of interlinkage, grain comer bubbles should be treated three dimensionally.

  • PDF

Gait Planning of Quadruped Walking and Climbing Robot in Convex Corner Environment

  • Loc, Vo Gia;Kang, Tae-Hun;Song, Hyun-Sup;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.314-319
    • /
    • 2005
  • When a robot navigates in the real environment, it frequently meets various environments that can be expressed by simple geometrical shapes such as fiat floor, uneven floor, floor with obstacles, slopes, concave or convex corners, etc. Among them, the convex corner composed of two plain surfaces is the most difficult one for the robot to negotiate. In this paper, we propose a gait planning algorithm to help the robot overcome the convex environment. The trajectory of the body is derived from the maximum distance between the edge boundary of the corner and the bottom of the robot when it travels in the convex environment. Additionally, we find the relation between kinematical structure of the robot and its ability of avoiding collision. The relation is realized by considering the workspace and the best posture of the robot in the convex structure. To provide necessary information for the algorithm, we use an IR sensor attached in the leg of the robot to perceive the convex environment. The validity of the gait planning algorithm is verified through simulations and the performance is demonstrated using a quadruped walking robot, called "MRWALLSPECT III"( Multifunctional Robot for WALL inSPECTion version 3).

  • PDF

Analysis and Suppression of the Corner Effect in a Saddle MOSFET Including Quantum Confinements Effects (양자가둠 효과를 포함한 Saddle MOSFET에서의 모서리효과의 분석과 억제방법)

  • Pervez, Syed Atif;Kim, Hee-Sang;Rehman, Atteq-Ur;Lee, Jong-Ho;Park, Byung-Gook;Shin, Hyung-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.3
    • /
    • pp.1-6
    • /
    • 2010
  • A comparative analysis of quantum-mechanical and classical simulation regarding corner effect in a Saddle MOSFET has been carried out using a 3-D numerical simulator. The comparison has shown that quantum simulation gives correct description of device by providing accurate peak E-density position and magnitude at the Si-fin cross-section, hence accurate analysis of corner effect and its impact on device threshold voltage (Vth) characteristics is carried out. Moreover, rounding the Si-fin comers or lowering the body doping have been shown as two possible techniques to suppress the undesirable corner effect.

Extracting the K-most Critical Paths in Multi-corner Multi-mode for Fast Static Timing Analysis

  • Oh, Deok-Keun;Jin, Myeoung-Woo;Kim, Ju-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.771-780
    • /
    • 2016
  • Detecting a set of longest paths is one of the crucial steps in static timing analysis and optimization. Recently, the process variation during manufacturing affects performance of the circuit design due to nanometer feature size. Measuring the performance of a circuit prior to its fabrication requires a considerable amount of computation time because it requires multi-corner and multi-mode analysis with process variations. An efficient algorithm of detecting the K-most critical paths in multi-corner multi-mode static timing analysis (MCMM STA) is proposed in this paper. The ISCAS'85 benchmark suite using a 32 nm technology is applied to verify the proposed method. The proposed K-most critical paths detection method reduces about 25% of computation time on average.