• Title/Summary/Keyword: jump-diffusion model

Search Result 22, Processing Time 0.069 seconds

Valuation of American Option Prices Under the Double Exponential Jump Diffusion Model with a Markov Chain Approximation (이중 지수 점프확산 모형하에서의 마코브 체인을 이용한 아메리칸 옵션 가격 측정)

  • Han, Gyu-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.4
    • /
    • pp.249-253
    • /
    • 2012
  • This paper suggests a numerical method for valuation of American options under the Kou model (double exponential jump diffusion model). The method is based on approximation of underlying asset price using a finite-state, time-homogeneous Markov chain. We examine the effectiveness of the proposed method with simulation results, which are compared with those from the conventional numerical method, the finite difference method for PIDE (partial integro-differential equation).

ASYMPTOTIC RUIN PROBABILITIES IN A GENERALIZED JUMP-DIFFUSION RISK MODEL WITH CONSTANT FORCE OF INTEREST

  • Gao, Qingwu;Bao, Di
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.735-749
    • /
    • 2014
  • This paper studies the asymptotic behavior of the finite-time ruin probability in a jump-diffusion risk model with constant force of interest, upper tail asymptotically independent claims and a general counting arrival process. Particularly, if the claim inter-arrival times follow a certain dependence structure, the obtained result also covers the case of the infinite-time ruin probability.

Characterization of Internal Reorientation of Methyl Group in 2,6-Dichlorotoluene

  • Nam-Goong, Hyun;Rho, Jung-Rae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.1
    • /
    • pp.35-55
    • /
    • 2009
  • The two correlation times previously obtained in our coupled $^{13}C$ relaxation measurement for the methyl group in 2,6-dichlorotoluene may be used as a criterion for evaluating the reorientation dynamics of an internal rotor. We numerically tested an extended diffusion model and the Smoluchowski diffusion equation to see how the rotational inertial effect and jump character contribute to the internal correlation time ratio of the internal rotor. We also analytically solved the general jump model with three different rate constants in a sixfold symmetric potential barrier. By assuming that the internal rotation of the methyl group in 2,6-dichlorotoluene can be described in terms of jumps among sixfold harmonic potential wells, we can conclude that the jump model satisfactorily reproduce the experimental data and the rate for sixfold jump is at least 1.53 times as great as that of a threefold jump.

Term Structure Estimation Using Official Rate

  • Rhee, Joon Hee;Kim, Yoon Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.655-663
    • /
    • 2003
  • The fundamental tenn structure model is based on the modelling of the short rate. It is well-known that the short rate depends on the interest rate policy of monetary authorities, especially on the official rate. Babbs and Webber(1994) modelled the tenn structure of interest rates using the official rate. They assume that the official rate follows a jump process. This reflects that the official rate infrequently changes. In this paper, we test this official tenn structure model and compare the jump-diffusion model with the pure diffusion model.

FIRST PASSAGE TIME UNDER A REGIME-SWITCHING JUMP-DIFFUSION MODEL AND ITS APPLICATION IN THE VALUATION OF PARTICIPATING CONTRACTS

  • Dong, Yinghui;Lv, Wenxin;Wu, Sang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1355-1376
    • /
    • 2019
  • We investigate the valuation of participating life insurance policies with default risk under a geometric regime-switching jump-diffusion process. We derive explicit formula for the Laplace transform of the price of participating contracts by solving integro-differential system and then price them by inverting Laplace transforms.

A FAST AND ROBUST NUMERICAL METHOD FOR OPTION PRICES AND GREEKS IN A JUMP-DIFFUSION MODEL

  • JEONG, DARAE;KIM, YOUNG ROCK;LEE, SEUNGGYU;CHOI, YONGHO;LEE, WOONG-KI;SHIN, JAE-MAN;AN, HYO-RIM;HWANG, HYEONGSEOK;KIM, HJUNSEOK
    • The Pure and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.159-168
    • /
    • 2015
  • Abstract. We propose a fast and robust finite difference method for Merton's jump diffusion model, which is a partial integro-differential equation. To speed up a computational time, we compute a matrix so that we can calculate the non-local integral term fast by a simple matrix-vector operation. Also, we use non-uniform grids to increase efficiency. We present numerical experiments such as evaluation of the option prices and Greeks to demonstrate a performance of the proposed numerical method. The computational results are in good agreements with the exact solutions of the jump-diffusion model.

APPROXIMATIONS OF OPTION PRICES FOR A JUMP-DIFFUSION MODEL

  • Wee, In-Suk
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.383-398
    • /
    • 2006
  • We consider a geometric Levy process for an underlying asset. We prove first that the option price is the unique solution of certain integro-differential equation without assuming differentiability and boundedness of derivatives of the payoff function. Second result is to provide convergence rate for option prices when the small jumps are removed from the Levy process.

Bayesian inference on multivariate asymmetric jump-diffusion models (다변량 비대칭 라플라스 점프확산 모형의 베이지안 추론)

  • Lee, Youngeun;Park, Taeyoung
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.99-112
    • /
    • 2016
  • Asymmetric jump-diffusion models are effectively used to model the dynamic behavior of asset prices with abrupt asymmetric upward and downward changes. However, the estimation of their extension to the multivariate asymmetric jump-diffusion model has been hampered by the analytically intractable likelihood function. This article confronts the problem using a data augmentation method and proposes a new Bayesian method for a multivariate asymmetric Laplace jump-diffusion model. Unlike the previous models, the proposed model is rich enough to incorporate all possible correlated jumps as well as mention individual and common jumps. The proposed model and methodology are illustrated with a simulation study and applied to daily returns for the KOSPI, S&P500, and Nikkei225 indices data from January 2005 to September 2015.

ENDOGENOUS DOWNWARD JUMP DIFFUSION AND BLOW UP PHENOMENA BEFORE CRASH

  • Kwon, Young-Mee;Jeon, In-Tae;Kang, Hye-Jeong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1105-1119
    • /
    • 2010
  • We consider jump processes which has only downward jumps with size a fixed fraction of the current process. The jumps of the pro cesses are interpreted as crashes and we assume that the jump intensity is a nondecreasing function of the current process say $\lambda$(X) (X = X(t) process). For the case of $\lambda$(X) = $X^{\alpha}$, $\alpha$ > 0, we show that the process X shold explode in finite time, say $t_e$, conditional on no crash For the case of $\lambda$(X) = (lnX)$^{\alpha}$, we show that $\alpha$ = 1 is the borderline of two different classes of processes. We generalize the model by adding a Brownian noise and examine the blow up properties of the sample paths.