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APPROXIMATIONS OF OPTION PRICES
FOR A JUMP-DIFFUSION MODEL

IN-SUK WEE

ABSTRACT. We consider a geometric Lévy process for an underly-
ing asset. We prove first that the option price is the unique solution
of certain integro-differential equation without assuming differentia-
bility and boundedness of derivatives of the payoff function. Second
result is to provide convergence rate for option prices when the small
jumps are removed from the Lévy process.

1. Introduction

We consider a geometric Lévy process for an underlying asset;
(1.1) dS; = S;-dYz,

where Y is a Lévy process satisfying some additional conditions. Unlike
the Black-Scholes model, it is well-known that the market is incomplete,
hence there are many martingale measures from which we can choose.
We select the minimal martingale measure which was introduced in [3]
and the price of an European contingent claim is expressed as the con-
ditional expectation of discounted payoff with respect to the minimal
martingale measure. In the Black-Scholes model, the price can be com-
puted explicitly and satisfies certain differential equation if the payoff
function is continuous and satisfies certain polynomial growth condition.
For the model considered here in (1.1), the corresponding statements
for computation of the price are no longer true. First the valuation
formula for the price cannot be explicitly given in general except when
the Lévy process is compound Poisson. Second it is implicitly assumed
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that the price satisfies the corresponding integro-differential equation.
To justify rigorously, one may prove that a nice solution to the integro-
differential equation exists, and that the standard Feynman-Kac type
result holds. But to my best knowledge, the existence of solution to the
integro-differential equation can be proved under more restrictive con-
ditions such as existence of bounded first and second derivatives of the
payoff function which can not be applied even to an European call and
put (see [4]).

There are two-fold aims of this paper. The first purpose is to provide
a rigorous proof that the price is a solution of the integro-differential
equation when the conditions on the payoff function are relaxed to the
level in the case of the differential equation. This solves the difficultly
not only in pricing but also in finding the hedging strategy, for which
it is required to find the derivatives of the price formula (see [7]). The
second purpose lies in justifying the practical simulation, in which Lévy
process is often approximated to compound Poisson precess by removing
the small jumps. It is then intuitively clear that the option price for
(1.1) can be approximated by the option prices with compound Poisson
processes replacing Lévy process. This is often useful, since when the
model is generated by a compound Poisson process, the option price can
be expressed explicitly as a series of Black-Scholes formulas incorporated
with Poisson distributions. We verify the convergence of the option
prices and provide the convergence rates in terms of Lévy measure near
Z€ero.

Throughout the paper, unless otherwise specified, we denote C to be
a generic positive constant depending on insignificant variables whose
value may vary from line to line.

2. Preliminaries

Suppose that the price of a risky asset is described by (1.1), where YV
is a Lévy process on (2, F, {F;}, P). The characteristic function of ¥’
is given by

Eexp(iu¥y) = exp(th(u)),
where
2

Y(u) =ifu — %—uz + /{I |<1}(eiwc — 1 — fuz)v(dzx)

+/{|z|>1}(e”’“ - 1v(dz)
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and
/min{l,wz}u(dm) < 0.

The notations and definition are basically from [7]. We assume that
the filtration {#;} is the minimal one generated by Y and satisfies the
usual conditions. For the purposes of our work, we make the following
assumptions:

(A1) / z?v(dz) < oo,
{lzl>1}
(42) [+ @)z < oo,
(A3) The support of v is contained in (—1,00).

From the Lévy decomposition of Y and (A1), we have

t
R [ [ viwtds,dy) - vidy)as) + ¢E(x3)
. 0
=B+ Mt + at,

where p(dt,dy) is a Poisson measure on RT x R — {0} with intensity
measure div(dy).
We denote by r the riskeless interest rate and let 5} =e S, In [2],
it was shown that the minimal martingale measure @ is given by
dQ
dP

= Zt,
Fi
where

t
Zy=1 +/ vz, —(O'dBt —I-th),
0

and
r—a

=52 + [y?v(dy)

Moreover under @,
Bt = Bt - ’70’t

is a Brownian motion and the process

My = My - t/'vyzl/(dy) = /Ot/ y(u(ds, dy) — v(dy)ds)
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is a martingale where
v(dy) = (1 + yy)v(dy).

Finally we need the following condition to ensure Z; > 0 almost surely
for all ¢.
(A4) Either (i) or (ii) holds;

(i) 0<r—a<o?+ [yiu(dy),

(ii) 7 —a < 0 and the support of v is contained in (-1, —%7)

Now we consider an European contingent claim with payoff ¢(Sr) at
the maturity T. Let the price with respect to the minimal martingale
measure ¢ be given by

(2.2) Eq (e‘T‘T‘“so(ST) ﬂ) = u(t, S).

3. Solution of integro-differential equation

For the Black-Scholes model, it is well known that the option price
is the unique solution to Cauchy problem of valuation PDE under some
growth condition on ¢. For a more general diffusion model, Feynman-
Kac type result was proved under less restrictive analytic conditions on
the SDE coefficients in [6]. In this section, we prove that the option
price is the unique solution to the Cauchy problem of the corresponding
integro-differential equation under a polynomial growth condition on ¢.
One possible approach seems to formulate and prove the Feynman-Kac
type result. But one must show that there exists a solution to the
Cauchy problem of the integro-differential equation beforehand so that
Ito’s formula can be applied. But to my best knowledge, a solution for
the integro-differential equation exists under very restrictive conditions
such as differentiability and boundedness of derivatives of ¢ which does
not hold even for an European call option. (e.g. [4])

In this section, we prove that u(t,z) in (2.2) is a unique solution
of the Cauchy problem of the given integro-differential equation under
a polynomial growth condition on ¢ without requiring differentiability.
The result seems to be not very surprising, but it has been overlooked in
the literatures (e.g. [2]) and needs to be verified. We confine to deal with
a linear integro-differential equation. The following is the main result of
this section.



Approximations of option prices for a jump-diffusion model 387

THEOREM 3.1. Suppose that ¢ is continuous for x > 0 and there
exist k > 2, p> 1 and € > 0 such that

(3.1) lp(2)| < C(lz|* + 1),

3.2 k5 (d 00,

(3.2) /{ i <

(3.3) / (14 9)~2i(dy) < oo.
{I14+yi<e}

Then u(t, x) satisfies the Cauchy problem of the following integro-differ-
ential equation;

Owu(t, z) + %azxzamu(t, z) + redpu(t, ) — ru(t, )

+ [(utt,a(t+ ) = u(t, ) - aydoutt,2)(dy)
(3.4) =0o0n(0,T)x R,
u(T,z) = ¢(z) on RT.

Moreover u is the unique solution which satisfies, for any 0 <t < T, and
x>0,

(3.5) lu(t, z)| < C(z* +1).

In the rest of this section, we prove the theorem by presenting and
combining a few lemmas. Let for 0 < ¢t < T,

2

U(t,z) = e T Ege (m exp { <7~ - %) (T —t) + o(Br — Bg}) ,
V(t,2) = U(T — t,¢%).
Then
u(t,z) = EQU (t,&,2(T)) = EQV (T — t, Mt 1m2(T)),
where for t < s < T,
6ua(s) = o+ [ [ ealrlvtutdr, ) = tay)an),
Mena(s) = Inéea(s).

From elementary calculation,

Vit z) = / T, — 9)3(y)dy,
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where
I't,x) = 1 exp (_z_2> e tht
’ V2rto 20%t ’
o r— to? 5 _(T+%02)2
o2 '’ 202
¢(z) = p(e”).

It is also easy to check that if (3.1) holds, then for any z,¢, and [ = 0,1, 2,
(3.6) 10'V (t,z)| < Ot~ (b + 1),

where 8 denotes differentiation of order [ with respect to z and ¢.

LeMMA 3.1. If for some k > 1, (3.1) holds and

(3.7) / ly*&(dy) < oo,
{lyl>1}
then for x > 0,
1
(3.8) dou(t,z) = —Eq (B V(T — t,mme(T))),

1
Opru(t,x) = ;EQ Oz V(T = t, i me(T)))

(3.9) BBV (T~ t,mna(T))).

Proof. Note that for |z| < |In(1 + h/z)|,

|V(T - tant,ln(:c+h)(T)) - V(T - t"’]t,lnx(T))| /|h‘|
= 0:V(T = t,meno(T) + 2)| In(1 + h/z)| /|A]

< C(t) (&™) (1+ h/w)* +1) In(1+ h/z)| /A,
Applying Ito’s formula (e.g. [5]), we obtain
EQ(Et,x(J;))k
— o ([ Boleaas) [(@ 4 -1- (e,
hence
310) o@D =o*ep {(T - [ @+ -1 - k)itan)}.

Using this and applying dominated convergence theorem, (3.8) follows,
and (3.9) can be proved analogously. O
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LEMMA 3.2. Under the assumptions of Theorem 3.1,
8tu(t, CL‘) = —EQ (8tV(T - t, nt,ln:r(T)))
- /(u(t, z(1 +y)) — ult, z) — Ogu(t, z)xy)v(dy).

Proof. We write for h > 0,

u(t,z) — u(t — h,z)
(3'11) = u(tv w) - EQV(T -1, nt—h,lnz(T))
+ EQ(V(T — t,m—nne(T)) = V(T =t + by h—p1n2(T)))-

First we show that

(3.12)
lim Eg (V(T = t,m—nna(T)) = V(T =t + by enma(T))) /h

= — EQ(8V(T — t,mms(T))) -
By (3.6) and (3.10), it is easy to calculate that
EQ V(T — t,m—hina(T)) = V(T — t + hym—nma(T))" /B
< C (Bq(&na(M)™ +1)

=C (a:”k exp {(T —t+h) /((1 +y)PF 1 —pky)f/(dy)} + 1) :

Hence
{V(T - t,n—hine(T)) = V(T =t + hy—pina(T)))/h, 0 < h < ho}

are uniformly integrable, for some hg > 0.

2
Since 7—p 1nz(T) L, Nt inz(T) ash — 0, (3.12) is proved. It remains
to deal with the first term in (3.11). We write

BQV(T 1,1 os(T)) ~ u(t )
= EQEQ(V(T - t’ nt—h,lnz(T))lj:t) - ’U,(t, CC)
~ Bqu(t,éi-ne(0) - u(t,2)
t
=80 [ [ ult.onalo)(1 4 1) = ultsiona(e)
= Ot E5)nal5)s] ),

(3.13)
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Now we observe that

Bl [ [t eona 1+ 1) - utt o)

— Butulty - a()Ea-na(9)) Hd)ds|

1 t
t—h

[ 0,6 a6+ ) — (0, n(s)

— Buulty€ona())Erna(s)y] 7(dy)| ds

C t -
< Zhg / h / Bazta(t, A)P[€en o (5)[Py?5(dy)ds,
t—

where A lies between & 5 ¢(s) and &_p z(144)(s). By Lemma 3.1, we
have, for 0 < h < hyg

(3.15)
|0actu(t, A)|(€s~h,z(s))?
< AT2EQ 100 V(T — ty e a(T)) — 82V(T — t,nen a(T))| (€e—h,o(s))?
< 087 (84 Bg(€a(T))F +1) (€r-na(s))?
< Cz? (Ak—ze(T—t)f(1+y)‘°—1—ky)l7(dy) + A—2) (&-na(s))?
< CzF(&n1(8))F(1+ (1 +9)F2)
xexp{(=0) (14" = 1= kpitan) | + €+ @+ )7,

where C is independent of t. Getting back to (3.14) and using (3.15) we
have that for 0 < h < hg, the last term in (3.14) is less than

CatPeT~Hp [(1+1)* ~1-ky)i(dy) / (L+ (1 +9)*DP)?i(dy)

+C [+ )Pty
This implies that

{h*l /t_h / [ult, €e-n,o(s)(1+9)) = u(t,E-na(s))

- zu(tagt—h,z(s))é‘t—h,z(s)y]ﬁ(dy)dsa 0<h< hO}
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are uniformly integrable, and as h — 0, converge to

/ (ut, 2(1 + g) — ult, 2) — Bypu(t, z)ay) #(dy).

Dealing with u(t + h, z) — u(t, z) for h > 0 analogously, we complete the
proof. O

Proof of Theorem 3.1. Using Lemma 3.1, and Lemma 3.2 and the
definition of V it is easy to obtain that the integro-differential equation
in (3.4) holds. The boundary condition in (3.4) follows by the continuity

of ¢, &.2(T) z, z as t— T and

Eo|U(t,&a(T)| < C (xk & {T [@ryr-1- ky),;(dy)} ¥ 1) .

To prove (3.5), we note that (3.6) implies
lu(t, z)| = |EQV(T ~ t,Mtn(T))|
C (Bq(éa(T)) +1)

e (:L‘kexp{(T —t)/((l by -1 ky)ﬁ(dy)} + 1) .

Finally, we employ the well-known Feynman-Kac type argument to the
prove the uniqueness. O

IA

4. Convergence rates for option prices

We remove the small jumps from the Lévy process Y; in (1.1) and
approximate it by the resulting compound Poisson process. Convergence
in distribution function with the convergence rate in this regard was
verified in [1]. In this section we study the convergence rate of the
option prices when the Lévy process is approximated by the compound
Poisson processes. It is interesting to note that the convergence rate is
determined by k(9), where

= 21/ .
KO = /{ly:sa} vvidy)

It is a meaningful quantity which determines the Berry-Essen type es-
timate for the difference of distribution functions in [1]. Most often in
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practice we approximate Y; by Y:?, where
¢
v = o°B, —I—/ / y(p(ds, dy) — v(dy)ds) + at
0 J{ly|>é}

o®B; + M + at,
(@2 = o+ / v (dy).
{ly|<d}

It seems natural to consider a stock price S,% derived by Y% in the place
of Y;. Let

ds® = 8% _dyy°.

The Radon-Nikodym derivative of the minimal martingale measure Q°
with respect to P is given by

t
=1+ / Y Z5_(03dB, + dM,?),
0

under which
Bg = Bt — Yo 6t,
and
it = [ [ ylu(dsdy) - 5(d)ds)
0 J{ly[>d}
are Brownian motion and compensated compound Poisson process re-
spectively. The price of option with the payoff ¢(Sr°) on {S¢} is given
by

Egs (Q_T(T—t)(ﬁ(STé)

}-t) = ua(t: Sté)a

where

s = EqsU%(t, & (T
u (tvx) = LS ( ?gt,x( ))7
Ué(t,m)ze—r(T—t)

x Egstp (m exp { (7" - (";)2> (T—t)+0° (BT5 - Bt“) }) ,

T
] =z 8 S - D .
€,(T) =z + / /{ PR ACVACRARECOD
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By changing the variables,
Vo(t,x) = U(T —t,e%),
nté,lnx(T) = lnég,x(T)>
we have

'U’J(t’ m) = EQ‘SVJ(T - t’ng,lna:(T)))
Vot e) = /F‘s(t,w —y)¢(y)dy,

where I'% has the analogous expression to I' with ¢® replacing o. It is
well-known that u®(t, ) can be explicitly expressed as a sum of modified
Black-Scholes formulas. Since the most of Lévy processes are not easily
simulated, it is an usual practice to neglect small jumps. Hence with
u®(t,r) as an approximation to option price u(t, ), it is meaningful to
have an estimate for u’(t,z) — u(t,z). We present the main result of
this section about the convergence rate for u’(t,z) — u(t,z) up to the
constant. Although the result seems to be new, the proof is routine but
not simple which consists of three steps.

THEOREM 4.1. Suppose that for k > 1,(3.1) holds, and f{ly|>1} |y|2

v(dy) < oo. Then for fixed t € (0,T), we have that for small § > 0, and
any z > 0

[WO(t, z) — u(t, z)| < CVEG)(z* +1).
The following equality allows us to proceed the proof in three steps;
W (t,2) — u(t,z) = EsU’(t,&4(T)) ~ EQU(t, &a(T))
= Eqs[U°(t,€(T)) — U(t, £,(T))]
+ Eqs[U(t,€4(T)) = U, &12(T))]
+ EqsU(t,£,2(T)) — EQU(t, &1,2(T)).

We provide two lemmas for the necessary estimates.

(4.1)

LEMMA 4.1. Suppose that (3.1) holds for k > 1. Then for fixed 0 <
t < T we have, for é small and any x > 0,

\U%(t, z) — U(t,z)| < Ck(6)(z® +1).
Proof. We write

Vi(t,) = Vita) = [ (o —9) ~T(te - )@
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Note that for some 0 < € < 1, and é small,
[To(t, z) — D(t,z)| < C’k(d)t_‘l/z exp (—(1 ~ €)z%/20%t) .
Then it is easy to check that
[Ve(t,z) — V(t,2)| < Ck(6)(€* + 1),
which implies the assertion. O

LEMMA 4.2. If (3.1) holds for k > 1, then for fixed t € (0, T], we have
for any z,y > 0,

U(t,z) — Ut,y)| < C(z* +y* + 1) |Inz/y|.
Proof. Note that for some 0 <e < 1,

ID(t,z) = T(t,y)| < Clz ~ y|t~3
X [exp (—(1 - e)m2/202t) + exp (—(1 - e)y2/202t)]

which implies that

V(t,2) - Vt,9)] < (e + €9 + D)z — y.

Vi
O

Proof of Theorem 4.1. We begin with the equality (4.1) and develop
the proof in the following three steps.

STEP 1. By Lemma 4.1 and (3.10), we have

|Bas (U7(t,€0(T) = U8, €5,(T))|
< Ch(8) Eqs(€a(T))* + 1)

= Ck(9) (mk exp ((T - t)/ (Q+y)f—1- ky)D(dy)) + 1) .
{ly>6}
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STEP 2. Lemma 4.2 implies that
|Bgs [U(t,€,(T)) — Ut,€00(T))|

€t,x(T)

o)
t,x T T T
v oo (D [ (0) ]) e

§to(T

[(é‘?,x(T))’“ + (&,2(T))* + 1])

< CzFexp {(T — t)/ ((1+ y)k -1- ky)D(dy)}
{ly|>6}

k

£10(T) £02(T) 1

X%(m&@>G+an>)Mﬂ>
Ga(T)| 1

+CEg (lnggw(:r) Ca(T)>’

where

dcs(t) = / () (uldt, dy) — D(dy)dt),
{lyl<8}

¢s(0) = 1.

By using the similar argument as in (3.10), we obtain

ly|<8}

EQ(¢s(T))™* = exp {T/{ (L+yy) -1+ 47y)ﬁ(dy)}

and

= exp{(T—t)

(L+y)*—1- 4ky)l7(dy)} :
{lyI<a}

395
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Note that

fta:
gtm

/ / (1 + y)(u(ds, dy) — 7(dy)ds)
{Iyl<5}
(T 1) (In(1+y) - y)5(dy).
{ly|<é}

By Ito’s formula, we obtain

Fq (1 f“’(T)) =@ [ (m(+y)Po(a)
{ly|<8}

gt z( )
2
+(T? - %) (/ (In(1+y) —y)f/(dy)>
{lyl<é}
< C(T - t)k(6).

Continuing to work on the expectations in (4.2), we have

k
ft,ac(T) 1
(4.3) Eq ( (1+ ( éziz(T)) ) Ca(T))
273 4 i
£t.o(T) §.0(T) -
SC{E‘?( smm” {HEQ (sfm) ] el

< C\Vk(8) (1 + exp {4'1(T —t) /{1 |<5}((1 +y)* -1 4ky)z7(dy)}>

§2(T)

o é-trz:( )

N

X exp 4_1T/ (L+7y)™* =1+ 4yy)o (dy)
{ly/<6}

and analogously
gt ac( )

1
EQ(I (T <5<T))

T
(44) < Ck(d)exp {

T+ -1+ 27y)17(dy)} :
{ly|<8}
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Combining (4.2), (4.3), and (4.4), we have for small § > 0,
|EqsU(t,60(T)) — EQU (¢, &2(T))]

N0) (xk exp {(T— t)/((l +y)f—1- ky)ﬂ(dy)} " 1) .

Therefore we have, for é small, and z > 0,
|Bqs (Ut ,(T)) = U t, &a(T))|
< Ot /R(B)e T I (L) ~1—k)i(dy),
STEP 3. We write
|EqsU (t, €(T)) — EQU (%, &.0(T)))|

e (ZZ(S((TI;) - 1)] |
ta (ZZi%) - 1)] |
=C (mk exp (2—1(:/’ —1) / ((1 +y)—1- 2ky) ﬁ(dy)) + 1)

"a (Zz(s((Tz;) - 1” :

< [Bo Wt eam)]’

IA

C [Bo(eea(my® +1]

Note that
Z%(T)
Eg Z(T) =1,
Z5(1)\* 2 5 2
EQ(Z(T) = exp{"/ (¢° = 0)T
+ T/ (1 +7y) % = 1+ 2yy)i(dy)
{lyl<s}
- 2T / 72y2V(dy)},
{lyl<s}
imply

§ 2
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which completes the proof of Theorem 4.1. O
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