DOI QR코드

DOI QR Code

Characterization of Internal Reorientation of Methyl Group in 2,6-Dichlorotoluene

  • Nam-Goong, Hyun (Analysis and Evaluation Research Institute Kolon Central Research Park) ;
  • Rho, Jung-Rae (Department of Oceanography, Kunsan National University)
  • Published : 2009.06.20

Abstract

The two correlation times previously obtained in our coupled $^{13}C$ relaxation measurement for the methyl group in 2,6-dichlorotoluene may be used as a criterion for evaluating the reorientation dynamics of an internal rotor. We numerically tested an extended diffusion model and the Smoluchowski diffusion equation to see how the rotational inertial effect and jump character contribute to the internal correlation time ratio of the internal rotor. We also analytically solved the general jump model with three different rate constants in a sixfold symmetric potential barrier. By assuming that the internal rotation of the methyl group in 2,6-dichlorotoluene can be described in terms of jumps among sixfold harmonic potential wells, we can conclude that the jump model satisfactorily reproduce the experimental data and the rate for sixfold jump is at least 1.53 times as great as that of a threefold jump.

Keywords

References

  1. H. Versmold, J. Chem. Phys. 58, 5649(1973). https://doi.org/10.1063/1.1679188
  2. V. A. Daragan, and K. H. Mayo, Prog in NMR. Spect. 31, 63(1997). https://doi.org/10.1016/S0079-6565(97)00006-X
  3. J. R. Rho, H. Namgoong, and J.W. Lee, Bull. Kor. Chem. Soc. 19, 1326(1998).
  4. E. Haslinger, and R. M. Lynden-Bell, J. Mag. Res. 31, 33(1978).
  5. T. E. Bull, J. Chem. Phys. 93, 6824(1990). https://doi.org/10.1063/1.458927
  6. R. E. D. McClung, J. Chem. Phys. 57, 5478(1972). https://doi.org/10.1063/1.1678249
  7. J. Jang, and K. Shin, J. Chem. Phys. 106, 6813(1997). https://doi.org/10.1063/1.473708
  8. L. G. Werbelow, and D. M. Grant, J. Chem. Phys. 63, 4742(1975). https://doi.org/10.1063/1.431261
  9. L. G. Werbelow, and D. M. Grant, Adv. Mag. Res. 9, 189(1977). https://doi.org/10.1016/B978-0-12-025509-2.50008-7
  10. D. Canet, Prog in NMR. Spect. 21, 237(1989) https://doi.org/10.1016/0079-6565(89)80005-6
  11. R. L. VoId, and R. R. VoId, Prog in NMR. Spect. 12, 79(1978) https://doi.org/10.1016/0079-6565(78)80004-1
  12. D. M. Grant, C. L. Mayne, F. Liu, and T. X. Xiang, Chem Rev.91,1591(1991) https://doi.org/10.1021/cr00007a015
  13. A. Szabo, J. Chem. Phys. 81, 150(1984). https://doi.org/10.1063/1.447378
  14. W. A. Steele, J. Chem. Phys. 33, 2411(1963).
  15. H. Namgoong, and J.W. Lee, J. Kor. Mag. Res. 2, 66(1998).
  16. Abragam, "The Principle of Nuclear Magnetism", Chap. 8,Oxford Univ. Press, London, 1961.
  17. J. McConnell, "The Theory of Nuclear Magnetic Relaxation in Liquids ", Chap. 2-4 Cambridge Univ. Press. New York, 1987.
  18. R. G. Gordon, J. Chem. Phys. 44, 1830(1966). https://doi.org/10.1063/1.1726949
  19. S. Chandrasekhar, Rev. Mod. Phys. 15, 1(1943). https://doi.org/10.1103/RevModPhys.15.1
  20. O. Edholm, and C. Blomberg, Chem. Phys. 42,449(1979). https://doi.org/10.1016/0301-0104(79)80095-6
  21. A. G. Redfield, Adv. Mag. Res. 1,1(1965). https://doi.org/10.1016/B978-1-4832-3114-3.50007-6
  22. H. Namgoong, J. J. Kim, and J. W. Lee, J. Kor. Mag. Res. 4, 29(2000).
  23. P. S. Hubbard, Rev. Mod. Phys. 33, 249(1961). https://doi.org/10.1103/RevModPhys.33.249
  24. D. W. Woessner, J. Chem. Phys. 36, 1(1962). https://doi.org/10.1063/1.1732274
  25. J. B. Lambert, R. J. Nienhuis, and R. B. Finzel, J. Phys. Chem. 85, 1170(1981). https://doi.org/10.1021/j150609a019
  26. G. Arfken, "Mathematical Methods for Physicists ", Chap. 14 Academic Press, London, 1985..
  27. D. Wallach, J. Chem. Phys. 47, 5258(1967). https://doi.org/10.1063/1.1701790
  28. H. G. Hertz, Prog. in NMR. Spect. 16,115(1983).
  29. B. C. Min, and J. W. Lee, J. Kor. Mag. Res. 2, 1(1998).