• Title/Summary/Keyword: joint tensile performance

Search Result 107, Processing Time 0.027 seconds

Connection Apparatus using Coupling Device and Linking Method for Reinforcing Bar (철근연결구를 이용한 철근이음장치(LK-DK) 개발에 관한 연구)

  • Woo, Jong-Yeol;Hong, Seong-Wook;Park, Seung-Hwan;Ann, Tae-Han;Choe, Min-Kwon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.175-176
    • /
    • 2012
  • In this study, coupler on the safety of meeting the requirements and construction and economy to satisfy the number of parts to minimize an LK-DK coupler has been developed, affordability existing reinforcing bar joint, welded joint, mechanical joints, compared with a favorable one to the understanding, and also facilitate the construction and logistics, etc. I've found that there is no additional pay because the amount of product performance through the tensile test after test, if commercialization is expected to be greater ramifications.

  • PDF

Performance Test Method on the Influence Waterproofing as Behavior of Concrete Structure (지하 콘크리트 구조물의 거동에 대한 방수층의 대응성 평가에 관한 실험적 연구)

  • Noh Jong-Soo;Kwon Shi-Won;Kwak Kyu-Sung;Kwon Kee-Joo;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.77-81
    • /
    • 2004
  • The massive structures are not free to move with vibration, differential settlement, thermal stresses because, construction and expansion joint, crack etc., can be large enough to cause leakage as deformation of waterproofing. It has been depended on the test method of tensile/tear strength which is waterproofing performance as behavior of concrete structure crack. However, not to practically confirm the creep applied to concrete surface, even waterproofing membrane have more performance than definite strength and elasticity. Therefore, in this study will focus on the test method to consider a resistance performance about loose adhesion and deformation of waterproofing and behavior of concrete structure as construction/expansion joint, crack. Performance test method on the influence as behavior of concrete structure crack is to choose waterproofing materials and construction method which possible to confront with behavior of 50mm crack in the atmosphere and low temperature. Examine the deformation of waterproofing membrane and loose adhesion which can occur to structure in general job site, suggest standard testing method to analyze correlation waterproofing membrane and structure with 5-types of materials used in this study, such as Adhesion membrane and sheet complex, sheet and urethane complex, self-adhesive sheet, spray poly-urea, spray membrane of rubberized Asphalt.

  • PDF

The Optimal Shape Design for the Compression Joint of Thermal Bridge Breaker using FEM (유한요소 해석을 통한 열교 차단장치의 압축판 최적형상 설계)

  • Shin, Dong-Hyeon;Kim, Young-Ho;Kim, Hyung-Joon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.13 no.2
    • /
    • pp.17-25
    • /
    • 2013
  • It is important to eliminate thermal bridge for achieving passive and environmental-friendly buildings. Structural members may frequently act as thermal bridges that become a conduit of energy. it is emphasized that thermal bridge breaker (TBB) system is necessary for blocking thermal bridge of the structural members. This TBB system has to maintain a performance to tensile and compressive stress which arises in member section in order to being realized structurally. Thus, it is composed with anchorage devices which obtain continuity with structural members inside building and rebar of cantilever balcony, and compression joint which resist compression stress occurring to TBB. Applying method of TBB's compression joint is designed to have high strength with comparatively small element section which can cover external load. This study carried out finite elements method based on compression experiment. Throughout the FEM analysis, this study provides information on finding optimal shape for compression joint of TBB which can suitably apply to current building balcony of Korea.

Brazing Property of SUS304 Stainless Steel and BNi-2 Filler Metal with Vacuum Brazing : Fundamental Study on Brazeability with Ni-Based Filler Metal(I) (진공브레이징에 의한 SUS304 스테인리스강과 BNi-2계 삽입금속의 접합특성 : Ni기 삽입금속에 의한 브레이징 접합성의 기초적 검토(I))

  • Lee, Yong-Won;Kim, Jong-Hoon
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.142-146
    • /
    • 2007
  • Vacuum brazing method has been coming to an important process as one of the new fabricating techniques of metals and alloys. In this study, a vacuum brazing of SUS304 stainless steel with BNi-2 filler metal was carried out in $1{\times}10^{4}$ Torr of vacuum atmosphere. The formation of brittle intermetallic compounds in brazed joints between SUS304 stainless steel and BNi-2 filler metal is a major concern, since they considerably degrade the mechanical properties of joints. To obtain enough stable joining strength, it is necessary to understand the unique properties of brazing process with Ni-based filler metals containing boron. So, in this research we investigated the performance of SUS304/BNi-2 brazed system and the brazed joint properties were evaluated at room temperature by using tensile test. Metallurgical and fractographic analysis were used to characterize the microstructure, the mechanisms of brazing, and joint failure modes.

Behaviour of recycled aggregate concrete beam-column connections in presence of PET fibers at the joint region

  • Marthong, Comingstarful
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.669-679
    • /
    • 2018
  • In this paper the behavior of reinforced concrete (RC) beam-column connections under cyclic loading was analyzed. The specimens, manufactured in a reduced-scale were made of (a) recycled aggregate concrete (RAC) by replacing 30% of natural coarse aggregate (NCA) with recycled coarse aggregate (RCA) and (b) RAC incorporating Polyethylene terephthalate (PET) fiber i.e., PET fiber-reinforced concrete (PFRC) at the joint region. PET fiber (aspect ratio=25) of 0.5% by weight of concrete used in the PFRC mix was obtained by hand cutting of post-consumer PET bottles. A reference specimen was also prepared using 100% of NCA and subjected to similar loading sequence. Comparing the results the structural behavior under cyclic loading of RAC specimens are quite similar to the reference specimens. Damage tolerance, load resisting capacity, stiffness degradation, ductility, and energy dissipation of the RAC specimens enhanced due to addition of PET fibers at the joint region. PFRC specimens also presented a lower damage indices and higher principal tensile stresses as compared to the RAC specimens. The results obtained gave experimental evidence on the feasibility of RAC for structural use. Using PET fibers as a discrete reinforcement is recommended for improving the seismic performance of RAC specimens.

Tensile Testing of Groove Welded Joints Joining Thick-HSA800 Plates (HSA800 후판재의 맞댐용접부 인장강도 실험)

  • Lee, Cheol Ho;Kim, Dae Kyung;Han, Kyu Hong;Park, Chang Hee;Kim, Jin Ho;Lee, Seung Eun;Kim, Do Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.431-440
    • /
    • 2013
  • In this study, a standard tensile welded-joint test was conducted to select a welding electrode suitable for recently developed HSA800 steel. Two welding electrodes were available at the time of this study; one was GMAW-based and the other FCAW-based. The tensile test specimens were fabricated by joining 60mm-thick HSA800 plates according to the AWS-prequalified groove welded joint details. Specimens which violate the standard root opening distance (ROD) were also included to see if poor construction tolerance could be accommodated. During fabrication, serious concerns about the welding efficiency of the GMAW-based product were raised by a certified welder. Both welding electrodes showed satisfactory and similar performance from welded joint strength perspective. But groove welded joints made by using the FCAW-based rod consistently showed more ductile and stable behavior. The AISC provisions for PJP joint strength were shown to be very conservative under direct tensile loading. Violating the AWS prequalified ROD by 100% apparently passed the strength criteria, but unusual crater-like fracture surface was observed.

Development of High Strength Lattice Girder and Evaluation of Its Performance (고강도 격자지보재의 개발 및 그 성능 평가)

  • Lee, Jae-Won;Min, Kyong-Nam;Jeong, Ji-Wook;Roh, Byoung-Kuk;Lee, Sang-Jin;Ahn, Tae-Bong;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.43-57
    • /
    • 2020
  • The objective of this study was to evaluate the performance of high-strength lattice girders as a possible superior alternative to conventional steel arch ribs. For this purpose, the structural characteristics of supports were analyzed using numerical analysis, and their performance was evaluated using maximum bending load tests and tensile tests of the welded joint. According to the results of structural analysis, the optimum size of the upper and lower members and plates is 50 mm × 31.8 mm × 25.4 mm, demonstrating excellent functionality and economic efficiency. High-strength lattice girders of dimensions 55 mm × 30 mm × 20 mm and 85 mm × 30 mm × 20 mm, determined from bending load tests, are found to meet both the reference values and the target values of H-profiles 100 and 125. A review of the ratio of theoretical deflection to actual deflection shows that the high-strength lattice girder developed during this study meets fewer than five of the evaluation criteria for lattice girder deflections proposed by the Federal Railway Department of Germany. Finally, tensile test results reveal that the welded joint of the high-strength lattice girder at the main steel bar-auxiliary steel bar-plate junction exceeds the target value, indicating that the welded joint has sufficient stability.

Numerical analysis of the combined aging and fillet effect of the adhesive on the mechanical behavior of a single lap joint of type Aluminum/Aluminum

  • Medjdoub, S.M.;Madani, K.;Rezgani, L.;Mallarino, S.;Touzain, S.;Campilho, R.D.S.G.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.693-707
    • /
    • 2022
  • Bonded joints have proven their performance against conventional joining processes such as welding, riveting and bolting. The single-lap joint is the most widely used to characterize adhesive joints in tensile-shear loadings. However, the high stress concentrations in the adhesive joint due to the non-linearity of the applied loads generate a bending moment in the joint, resulting in high stresses at the adhesive edges. Geometric optimization of the bonded joint to reduce this high stress concentration prompted various researchers to perform geometric modifications of the adhesive and adherends at their free edges. Modifying both edges of the adhesive (spew) and the adherends (bevel) has proven to be an effective solution to reduce stresses at both edges and improve stress transfer at the inner part of the adhesive layer. The majority of research aimed at improving the geometry of the plate and adhesive edges has not considered the effect of temperature and water absorption in evaluating the strength of the joint. The objective of this work is to analyze, by the finite element method, the stress distribution in an adhesive joint between two 2024-T3 aluminum plates. The effects of the adhesive fillet and adherend bevel on the bonded joint stresses were taken into account. On the other hand, degradation of the mechanical properties of the adhesive following its exposure to moisture and temperature was found. The results clearly showed that the modification of the edges of the adhesive and of the bonding agent have an important role in the durability of the bond. Although the modification of the adhesive and bonding edges significantly improves the joint strength, the simultaneous exposure of the joint to temperature and moisture generates high stress concentrations in the adhesive joint that, in most cases, can easily reach the failure point of the material even at low applied stresses.

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

Evaluation of Crack Resistance of Cold Joint as Usage of Sealing Tape (실링 테이프 적용에 따른 시공조인트 균열 저항성 평가)

  • Lee, JaeJun;Lee, Seonhaeng;Kim, Du-Byung;Lee, Jinwook
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2018
  • PURPOSES : In order to evaluate a crack resistance at cold joint, sealing tape was adopted to apply at cold joint instead of typical tack coat material(RSC-4). The sealing tape was made by hot sealing material. The crack resistance as function of environmental and traffic loading was measured with visual observation. METHODS : In this study, the crack resistance was evaluated as function of environmental and traffic loading. The freeze-thaw method was adopted for environmental loading of asphalt pavement. condition. The damage of cold joint under freeze-thaw action is initiated by ice expansion load and accelerated by the interfacial damage between new and old asphalt pavement. The traffic loading was applied with wheel tracking machine on the cold joint area of the asphalt pavement for 3 hours at $25^{\circ}C$. The evaluation of crack resistance was measured with visual observation. The freeze-thaw results shows that the sealing tape was significantly increased the crack resistance based on. RESULTS : To estimate the crack resistance at cold joint area due to the environmental loading, the Freeze-thaw test was conducted by exposing the product to freezing temperature(approximately $-18^{\circ}C$) for 24 hours, and then allowing it to thaw at $60^{\circ}C$ for 24 hours. The tack coat material(RSC-4) was debonded after 21 cycles of the Freeze-thaw test. The first crack was observed after 14 freeze-thaw cycle with RSC-4 material. But, the sealing tape was not debonded after 24 cycle test. Also, the sealing tape shows the better performance of the crack resistance under the traffic loading with wheel track test. The crack was generated the under traffic loading with RSC-4(tack coating), however, the crack was not shown with sealing tape. It indicates that the sealing tape has a strong resistance of tensile stress due to traffic loading. CONCLUSIONS :Based on limited laboratory test result, a performance of crack resistance using the sealing tape is better than that of general tack coat material(RSC-4). It means that the sealing tape is possible to extend a pavement service life because the crack, one of the main pavement distresses, will be delayed.