• Title/Summary/Keyword: joint tensile performance

Search Result 107, Processing Time 0.029 seconds

Fatigue Evaluation of Precast Concrete Deck Connection using Ultra-High Performance, Fiber Reinforced Concrete (초고성능 섬유보강 콘크리트를 적용한 프리캐스트 바닥판 접합부의 피로성능 평가)

  • Lee, Jun-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.275-285
    • /
    • 2015
  • This experimental study presents the fatigue evaluation of a precast deck connected using Ultra-High Performance, Fiber Reinforced Concrete (UHPFRC). Four types of two identical large-scale specimens were fabricated with simplified splice rebar details which had a short splice length of ten times rebar diameter. The flexural behavior of each type of specimens until failure was investigated and fatigue behavior of the same type of specimens was then evaluated using two-million cyclic loading. In the flexural tests, tensile rebars exhibited the deformation exceeding yielding strain but failure mode related to the splice details was not observed in spite of such a short splice length. In the fatigue tests, damage was not appreciably accumulated by the cyclic loading except initial flexural cracks and the stress variations in tensile rebars was less than the allowable stress range. These experimental results demonstrate that all types of specimens exhibited acceptable fatigue performance and indicate that enhanced mechanical properties of ultra-high performance material permits to use a simplified splice details along with short joint width.

Development of Connection Details of RC Wale-Steel Beam Joint Subjected to Axile and Shear Load (축력 및 전단력을 받는 RC 띠장-철골 보 접합부의 접합연결재 개발)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.189-196
    • /
    • 2004
  • The RC wale-steel beam stud connection may have smaller moment and shear resistance because the tensile and shear capacity of the studs are limited by the depth of RC beam. Especially, they are subjected to compressive axial load. This paper describes the experimental works to develop the connection details of RC wale-steel beam joints subjected to shear and axial loads. Shear connectors developed in this study are closed C type deformed bar, opened C type deformed bar, and U type deformed bar. From shear test, the shear performance of RC wale-steel beam joint with the developed connectors are compared with the stud connection. Test results indicated that the developed connectors were very effiecive to increase the shear strength.

Development of the CFRP Automobile Parts Using the Joint Structure of the Dissimilar Material (결합부 강화구조용 탄소복합재 자동차 부품 개발)

  • Ko, Kwan Ho;Lee, Min Gu;Huh, Mongyoung
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.392-397
    • /
    • 2018
  • In this study, the development purpose is to replace steel Tie Rod of commercial vehicle to the carbon composite by a braiding process. CFRP tie rod was designed to meet the performance requirements of existing products by designing the cross section of the core for braiding weaving and the structural design of the joint between the core and the carbon fiber. The specimens were fabricated by braiding method and applied to structural analysis through test evaluation. The manufacturing process proceeded from braiding to infusion through post-curing process. The test evaluation of the final product was satisfactorily carried out by sequentially performing tensile test, torsion test, compression test and fatigue test. In addition, the weight of CFRP tie rod could be reduced by about 37% compared to existing products.

A Study on EMS Protective Gear Design and Its Effects for Elite Badminton Players with Knee Pain (무릎 통증이 있는 엘리트 배드민턴 선수를 위한 건식 E-textile 전극의 EMS(Electirc muscle stimulation) 보호대 설계 및 효과)

  • JuIl Lee;Jinhee Park;Jooyong Kim
    • Journal of Fashion Business
    • /
    • v.27 no.5
    • /
    • pp.93-107
    • /
    • 2023
  • This study aimed to design a knee brace with dry electrode EMS (Electrical Muscle Stimulation) for elite badminton players suffering from knee pain and assess its effectiveness in relieving pain and improving mobility. The assessment measured knee joint range of motion (ROM), Sargent jump height, and pain perception using a visual analog scale (VAS). Four experimental groups were established: stability, pain induction after 100 squats, muscle soreness induction with a regular knee brace, and muscle soreness induction with the EMS knee brace. The most suitable knee brace was selected from four samples to design the EMS knee brace. The conductive fabric was integrated into the inner surface of the knee brace to enhance EMS conductivity for the quadriceps muscles. Tensile strength tests showed that the dry electrode did not significantly affect the physical functionality of the knee brace.Regarding knee joint ROM and Sargent jump height, the EMS knee brace outperformed muscle soreness induction with a regular knee brace and wearing a standard knee brace. VAS measurements demonstrated that the EMS braces effectively alleviated pain perception in most cases. The results indicate the potential for developing EMS braces to alleviate pain and prevent injuries for athletes across various sports.

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.

An Experimental Study on the Characteristics of Residual Stresses in Welds of SM570-TMC Steels (SM570-TMC 강의 잔류응력 특징에 관한 실험적 연구)

  • Park, Hyeon-Chan;Lee, Jin-Hyeong;Kim, Jae-Hwan;Choe, Ui-Hong;Choe, Myeong-Gi;Jang, Gyeong-Ho
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.276-278
    • /
    • 2005
  • Bridge constructed recently is preferred to have a long span and a simple structure detail considering not only functions as bridge but scenic beauty, maintenance, construction term and life cycle cost, etc. Therefore, it demands a high quality steel like a thick plate steel and a high performance steel. A TMCP steel produced by theme-mechanical control process is now spotlighted due to the weldability for less carbon equivalent. It improved at strength and toughness in microstructure. Resently the SM570-TMC steel, a high strength TMCP steel whose tensile strength is 600MPa, is developed and applied to steel structures. But, for the application of this steel to steel structures, it is necessary to elucidate not only the material characteristics but also the mechanical characteristic of welded joint. In this paper, we investigated the characteristics of residual stresses generated by welding of SM570-TMC steels through an experimental study

  • PDF

The Optimization of Laser Welding Process for Electrical Steel Coil Joining Using the Taguchi Method (다구찌 방법을 이용하는 전기강판 코일 연결용 레이저 용접 공정의 최적화)

  • Shin, Joong-Han;Kim, Do-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.63-70
    • /
    • 2022
  • Laser welding has attracted great attention as a tool used to join electrical steel coils. In this study, laser butt welding for electrical steel coil joining was conducted using the Taguchi method. It was found that structural defects such as void sand cracks were not produced in welds. This indicated that the performance of laser welding in electrical steel was excellent. According to the Taguchi analysis, the total welding quality index (TWQI) considering the bead height and roughness and tensile strength of the weld joint was almost evenly affected by laser power, welding speed, and focal position. The optimum welding conditions to maximize the TWQI were a laser power of 1220W, welding speed of 90 mm/s, and a focal position of 1mm. The regress model predicting the TWQI was also developed using the surface response method. We found that the model predicts measured values with an average error of 16.36%.

Dynamic punching shear tests of flat slab-column joints with 5D steel fibers

  • Alvarado, Yezid A.;Torres, Benjamin;Buitrago, Manuel;Ruiz, Daniel M.;Torres, Sergio Y.;Alvarez, Ramon A.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.281-292
    • /
    • 2022
  • This study aimed to analyze the dynamic punching shear performance of slab-column joints under cyclic loads with the use of double-hooked end (5D) steel fibers. Structural systems such as slab-column joints are widely found in infrastructures. The susceptibility to collapse of such structures when submitted to seismic loads is highly dependent on the structural performance of the slab-column connections. For this reason, the punching capacity of reinforced concrete (RC) structures has been the subject of a great number of studies. Steel fibers are used to achieve a certain degree of ductility under seismic loads. In this context, 5D steel hooked fibers provide high levels of fiber anchoring, tensile strength and ductility. However, only limited research has been carried out on the performance under cyclic loads of concrete structural members containing steel fibers. This study covers this gap with experimental testing of five different full-scale subassemblies of RC slab-column joints: one without punching reinforcement, one with conventional punching reinforcement and three with 5D steel fibers. The subassemblies were tested under cyclic loading, which consisted of applying increasing lateral displacement cycles, such as in seismic situations, with a constant axial load on the column. This set of cycles was repeated for increasing axial loads on the column until failure. The results showed that 5D steel fiber subassemblies: i) had a greater capacity to dissipate energy, ii) improved punching shear strength and stiffness degradation under cyclic loads; and iii) increased cyclic loading capacity.

Adhesive Performance and Fracture Toughness Evaluation of FRP-Reinforced Laminated Plate (FRP 보강적층판의 접착성능 및 파괴인성평가)

  • Jung, Hong-Ju;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.868-875
    • /
    • 2015
  • In order to replace existing slit type steel plate on the wooden structure joint, the FRP-reinforced laminated plates were produced. Four types of FRP-reinforced laminated plates were produced according to the type of reinforcement and adhesive, and before applying to the joint, the adhesion performance test according to KSF 3021 and KSF 2160 and the Compact Tension (CT) type fracture toughness test specified in ASTM D5045-99 were carried out. As a result of adhesion performance test, all GFRP textile, GFRP sheet, and GFRP Textile-Sheet type FRP-reinforced laminated plates satisfied the requirement of soaking delamination percentage with smaller than 5% based on KS standard. However, aramid type specimen satisfied the standard as the soaking delamination percentage of 4.8% but it did not satisfied the standard as the water proof soaking delamination percentage of 70%. As a result of fracture toughness test, the volume ratio of reinforcement to timber became 23% so that the strength of FRP-reinforced laminated plates increased by two to four times in comparison to the control specimen. It was confirmed that the GFRP Textile-Sheet type specimen was most resistant to the fracture most since the ratio of stress intensity factor compared with that of the control increased to 61% owing to the parallel arrangement of glass fiber to the load. As a result of tensile shear strength test using FRP-reinforced laminated plates and nonmetal dowels, it is about 12% lower than metal connectors.

A Fundamental Study on Induction Technology of Separation Behavior Using Two-sided Adhesion of Joint of Composites Waterproofing System (시트-도막 복합방수공법의 접합부 2면 접착을 통한 분리거동 유도 기술에 관한 기초적 연구)

  • Park, Jin-Sang;Lee, Tae-Yang;Kim, Dong-Bum;Park, Wan-Goo;Heo, Neung-Hoe;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.212-219
    • /
    • 2015
  • This study focuses evaluating the efficiency and performance evaluation of composite type sheet-membrane waterproofing method that utilizes a separation behavior inducement system designed to resolve the chronic problems of disintegration and damage of overlap areas of waterproofing layers. As the result of the test, the tensile strength value was at 13.8N/mm and elongation rate at 587% for the separation behavior inducement type specimen, and the compared specimens had 14.2N/mm for tensile strength and 335% for elongation rate. For the separation behavior adhesion method specimen, when tensile stress or displacement occurred, the Zero-Span tension occurrence did not follow, which resulted in that the bottom sheet layer and the top membrane layer did not simultaneously becoming damaged. When undergoing the top and bottom layers were separated through separation behavior due to lack of flexibility, the bottom layer began to damage at the primary stage, and with the allowed boundary the upper membrane layer began to display flexibility and showed continuous displaced resulting in secondary phase damaging.