DOI QR코드

DOI QR Code

Development of the CFRP Automobile Parts Using the Joint Structure of the Dissimilar Material

결합부 강화구조용 탄소복합재 자동차 부품 개발

  • Ko, Kwan Ho (Composites Processing Division, Korea Institute of Carbon Convergence Technology) ;
  • Lee, Min Gu (Composites Processing Division, Korea Institute of Carbon Convergence Technology) ;
  • Huh, Mongyoung (Composites Processing Division, Korea Institute of Carbon Convergence Technology)
  • Received : 2018.11.01
  • Accepted : 2018.12.17
  • Published : 2018.12.31

Abstract

In this study, the development purpose is to replace steel Tie Rod of commercial vehicle to the carbon composite by a braiding process. CFRP tie rod was designed to meet the performance requirements of existing products by designing the cross section of the core for braiding weaving and the structural design of the joint between the core and the carbon fiber. The specimens were fabricated by braiding method and applied to structural analysis through test evaluation. The manufacturing process proceeded from braiding to infusion through post-curing process. The test evaluation of the final product was satisfactorily carried out by sequentially performing tensile test, torsion test, compression test and fatigue test. In addition, the weight of CFRP tie rod could be reduced by about 37% compared to existing products.

본 연구에서는 기존의 스틸재 타이로드를 브레이딩 공법을 적용한 탄소복합재로 개발하고자 하였다. 탄소복합재 타이로드는 기존 제품과 동등한 성능을 만족시키기 위하여 브레이딩 직조에 필요한 코어 단면설계, 코어와 탄소섬유의 접합부에 대한 구조형상설계를 진행하였다. 그리고 브레이딩 공법을 적용한 시편을 제작하여 시험평가를 통해 구조해석에 적용하였다. 제작 공정은 브레이딩 직조 후 인퓨전 공정을 거쳐 후경화 공정까지 진행하였으며 최종 제품에 대한 시험평가는 인장 시험, 비틀림 시험, 압축 시험과 피로시험을 순차적으로 진행하여 모두 만족시켰다. 또한 탄소복합재 타이로드의 중량을 기존 제품 대비 약 37% 정도 경량화시킬 수 있었다.

Keywords

BHJRB9_2018_v31n6_392_f0001.png 이미지

Fig. 1. Shape of TIE ROD

BHJRB9_2018_v31n6_392_f0002.png 이미지

Fig. 2. Core shape of CFRP TIE ROD

BHJRB9_2018_v31n6_392_f0003.png 이미지

Fig. 3. Test equipment of tensile test

BHJRB9_2018_v31n6_392_f0004.png 이미지

Fig. 4. After shape of specimen for UD18 and UD36 in tensile test

BHJRB9_2018_v31n6_392_f0005.png 이미지

Fig. 5. Load/Boundary Condition for tensile and torsion

BHJRB9_2018_v31n6_392_f0006.png 이미지

Fig. 6. Load/Boundary Condition for compression

BHJRB9_2018_v31n6_392_f0007.png 이미지

Fig. 7. Stress distribution of dir. 0° and 90° for Compression

BHJRB9_2018_v31n6_392_f0008.png 이미지

Fig. 8. Stress distribution of dir. 0° and 90° for Tensile

BHJRB9_2018_v31n6_392_f0009.png 이미지

Fig. 9. Stress distribution of dir. 0° and 90° for Torsion

BHJRB9_2018_v31n6_392_f0010.png 이미지

Fig. 10. Braiding process of CFRP TIE ROD

BHJRB9_2018_v31n6_392_f0011.png 이미지

Fig. 11. Infusion process of CFRP TIE ROD

BHJRB9_2018_v31n6_392_f0012.png 이미지

Fig. 12. CFRP TIE ROD

BHJRB9_2018_v31n6_392_f0013.png 이미지

Fig. 13. Three types of Core shape for ball joint region

BHJRB9_2018_v31n6_392_f0014.png 이미지

Fig. 14. Test process of tensile test for ball joint region

BHJRB9_2018_v31n6_392_f0015.png 이미지

Fig. 15. Test process of torsion test

BHJRB9_2018_v31n6_392_f0016.png 이미지

Fig. 16. Test process of compression test for TIE ROD

BHJRB9_2018_v31n6_392_f0017.png 이미지

Fig. 17. Test process of Fatigue test for TIE ROD

Table 1. Tensile test results of specimen for UD18 and UD36

BHJRB9_2018_v31n6_392_t0001.png 이미지

Table 2. Analysis result for final design

BHJRB9_2018_v31n6_392_t0002.png 이미지

Table 3. Test result of CFRP TIE ROD for tensile and torsion

BHJRB9_2018_v31n6_392_t0003.png 이미지

Table 4. Test result of CFRP TIE ROD

BHJRB9_2018_v31n6_392_t0004.png 이미지

References

  1. Mun, J.H., Han, K.D., Hong, S.H., Kweon, Y.G., and Do, R.M., "A Study on Development of Automobile Parts using CFRP," The Korean Society of Manufacturing Process Engineers, Proceedings of the KSMPE Conference, Vol. 11, 2011, pp. 59-59.
  2. Kim, D.H., "Fatigue Analysis for Fiber Right Angle Direction of FRP Deck," Journal of the Korean Society of Safety, Vol. 29, No. 6, pp. 81-86, December 2014. https://doi.org/10.14346/JKOSOS.2014.29.6.081
  3. Kwon, D.J., Park, S.M., Park, J.M., and Kwon, I.J., "A Study on Bonding Process for Improvement of Adhesion Properties Between CFRP-Metal Dual Materials," Composites Research, Vol. 30, No. 6, 2017, pp. 416-421. https://doi.org/10.7234/COMPOSRES.2017.30.6.416
  4. Shin, D.W., Kim, J.J., Lee, J.H., Kwon, I.J., and Park, S.M., "Evaluation on the Effect of Beads for Adhesive Improvement of CFRP and Aluminum," Composites Research, Vol. 30, No. 4, 2017, pp. 254-260. https://doi.org/10.7234/COMPOSRES.2017.30.4.254
  5. Baek, S.M., Lim, S.J., Kim, M.S., Ko, M.G., and Park, C.Y., "Study on Mechanical Properties of CFRP Composite Orthogonal Grid Structure," Composites Research, Vol. 31, No. 2, 2018, pp. 69-75. https://doi.org/10.7234/COMPOSRES.2018.31.2.069
  6. Im, J.M., Kang, S.G., Shin, K.B., and Lee, S.W., "Study on Evaluation Method of Structural Integrity of Cylindrical Composite Lattice Structures," Composites Research, Vol. 30, No. 6, 2017, pp. 338-342. https://doi.org/10.7234/COMPOSRES.2017.30.6.338
  7. Park, S.J., Ko, M.G., Kim, D.G., Kim, S.K., Moon, C.O., Kweon, J.H., and Choi, J.H., "Design and Verification of Shear Buckling Test Fixture for Composite Laminate," Composite Research, Vol. 27, No. 4, 2017, pp. 158-167. https://doi.org/10.7234/COMPOSRES.2014.27.4.158
  8. Chen, H.J., and Tsai, S.W., "Analysis and Optimum Design of Composite Grid Structures," Journal of Composite Materials, Vol. 30, No. 4, 1996, pp. 503-534. https://doi.org/10.1177/002199839603000405
  9. Jeon, S.W., Han, M.G., Chang, S.H., Cho, Y.H., and Park, C.M., "Design of CFRP-Metal Hybrid Pantograph Upper-arm," Composites Research, Vol. 28, No. 5, 2015, pp. 327-332. https://doi.org/10.7234/composres.2015.28.5.327
  10. Park, Y.M., Chung, S.G., Jeong, Y.J., Park, N.H., Kim, S.Y., Huh, M.Y., and Lee, H.S., "Preliminary Study on the Toughened Epoxy Matrix for High Performance CFRP Pressure Vessels," The Korean Society of Propulsion Engineers, 2015 KSPE Fall Conference, pp. 933-936.