• 제목/요약/키워드: joint resistance

검색결과 571건 처리시간 0.023초

Connections between RC beam and square tubed-RC column under axial compression: Experiments

  • Zhou, Xu-Hong;Li, Bin-Yang;Gan, Dan;Liu, Jie-Peng;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.453-464
    • /
    • 2017
  • The square tubed-reinforced concrete (TRC) column is a kind of special concrete-filled steel tube (CFST) columns, in which the outer thin-walled steel tube does not pass through the beam-column joint, so that the longitudinal steel reinforcing bars in the RC beam are continuous through the connection zone. However, there is a possible decrease of the axial bearing capacity at the TRC column to RC beam connection due to the discontinuity of the column tube, which is a concern to engineers. 24 connections and 7 square TRC columns were tested under axial compression. The primary parameters considered in the tests are: (1) connection location (corner, exterior and interior); (2) dimensions of RC beam cross section; (3) RC beam type (with or without horizontal haunches); (4) tube type (with or without stiffening ribs). The test results show that all specimens have relatively high load-carrying capacity and satisfactory ductility. With a proper design, the connections exhibit higher axial resistance and better ductility performance than the TRC column. The feasibility of this type of connections is verified.

Experimental and numerical investigation on in-plane behaviour of hollow concrete block masonry panels

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Iyer, Nagesh R.;Lakshmanan, N.;Bhagavan, N.G.
    • Computers and Concrete
    • /
    • 제10권1호
    • /
    • pp.1-18
    • /
    • 2012
  • This paper presents the details of studies conducted on hollow concrete block masonry (HCBM) units and wall panels. This study includes, compressive strength of unit block, ungrouted and grouted HCB prisms, flexural strength evaluation, testing of HCBM panels with and without opening. Non-linear finite element (FE) analysis of HCBM panels with and without opening has been carried out by simulating the actual test conditions. Constant vertical load is applied on the top of the wall panel and then lateral load is applied in incremental manner. The in-plane deformation is recorded under each incremental lateral load. Displacement ductility factors and response reduction factors have been evaluated based on experimental results. From the study, it is observed that fully grouted and partially reinforced HCBM panel without opening performed well compared to other types of wall panels in lateral load resistance and displacement ductility. In all the wall panels, shear cracks originated at loading point and moved towards the compression toe of the wall. The force reduction factor of a wall panel with opening is much less when compared with fully reinforced wall panel with no opening. The displacement values obtained by non-linear FE analysis are found to be in good agreement with the corresponding experimental values. The influence of mortar joint has been included in the stress-strain behaviour as a monolith with HCBM and not considered separately. The derived response reduction factors will be useful for the design of reinforced HCBM wall panels subjected to lateral forces generated due to earthquakes.

위팔두갈래근의 긴갈래와 짧은갈래의 팔굽관절 굽힘 각도에 따른 근활성도 분석 (An Analysis of Muscular Activity of the Long and Short Heads of Biceps Brachii Muscle According to the Elbow Flexion Angle)

  • 김정욱;박민철
    • PNF and Movement
    • /
    • 제18권1호
    • /
    • pp.127-132
    • /
    • 2020
  • Purpose: This study aimed to investigate the impact of resistance on the muscle activities of the long and short heads of the biceps brachii, according to the elbow angle in supination, and the difference in muscle activity between the long and the short heads. Methods: This study was conducted with 22 men in their 20s who voluntarily agreed to participate. With the glenohumeral joint neutral in a position of supination, the elbow angle was randomly moved to 0°, 30°, 60°, and 90°. Using an 8-channel surface EMG while the participants held a 2-kg. dumbbell, the muscle activities of the long and the short heads of the biceps brachii were measured. The measured data were statistically processed using SPSS for Windows 12.0. For the activities of the short and the long heads according to the angle, a one-way ANOVA was conducted, and subsequently, to check the results of an analysis of the difference between groups, an LSD post-hoc test was conducted. An independent t-test was used to compare the activities of the long head and the short head according to the angles. Results: The analysis of the impact of the load of the dumbbell at each elbow angle on the muscle activities of the long and short heads of the biceps brachii revealed significant differences in both heads (p < 0.05). The result of the post-hoc analysis showed significant differences in both heads at angles between 0° and 30°, between 0° and 60°, and between 0° and 90°. Analysis of the impact of the load of the dumbbell in supination on the muscle activities of the long and short heads showed a significant difference at the angle between 0° and 30° (p < 0.05). Conclusion: The long head of the biceps brachii mainly acts in supination; however, in supination at elbow-bending angles of 60° and 90°, there was no difference in muscle activity between the short head and the long head.

W-1.5 ZrO2 복합재료 합성과 급속소결 (Synthesis and Rapid Consolidation of W-1.5 ZrO2 Composite)

  • 김성은;손인진
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.653-658
    • /
    • 2018
  • $ZrO_2$ is a candidate material for hip and knee joint replacements because of its excellent combination of biocompatibility, corrosion resistance and low density. However, the drawback of pure $ZrO_2$ is a low fracture toughness at room temperature. One of the most obvious tactics to cope with this problem is to fabricate a nanostructured composite material. Nanomaterials can be produced with improved mechanical properties(hardness and fracture toughness). The high-frequency induction heated sintering method takes advantage of simultaneously applying induced current and mechanical pressure during sintering. As a result, nanostructured materials can be achieved within very short time. In this study, W and $ZrO_2$ nanopowders are mechanochemically synthesized from $WO_3$ and Zr powders according to the reaction($WO_3+3/2Zr{\rightarrow}W+3/2ZrO_2$). The milled powders are then sintered using high-frequency induction heating within two minutes under the uniaxial pressure of 80MPa. The average fracture toughness and hardness of the nanostructured W-3/2 $ZrO_2$ composite sintered at $1300^{\circ}C$ are $540kg/mm^2$ and $5MPa{\cdot}m^{1/2}$, respectively. The fracture toughness of the composite is higher than that of monolithic $ZrO_2$. The phase and microstructure of the composite is also investigated by XRD and FE-SEM.

An experimental study of the behaviour of double sided bolted billet connections in precast concrete frames

  • Gorgun, Halil
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.603-622
    • /
    • 2018
  • Precast concrete structures are erected from individual prefabricated components, which are assembled on-site using different types of connections. In the present design of these structures, beam-to-column connections are assumed pin jointed. Bolted billet beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is currently limited information concerning their detailed structural behaviour under vertical loadings. The experimental work has involved the determination of moment-relative rotation relationships for semi-rigid precast concrete connections in full-scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and bolt arrangements conformed to successful commercial practice. Proprietary hollow core floor slabs were tied to the beams by 2T25 tensile reinforcing bars, which also provide the in-plane continuity across the connections. The contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. The flexural strength of the connections in the double-sided tests was at least 0.93 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.94 to 1.94 times the flexural stiffness of the attached beam. In general, the double-sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided bolted billet connection test results are presented in this paper. The behaviour of single sided bolted billet connection test results is the subject of another paper.

적층공정법으로 제작된 CoCrMo 합금의 복합열처리 효과 (Complex heat-treatment effects on as-built CoCrMo alloy)

  • 이정일;김형균;정경환;김강민;손용;류정호
    • 한국결정성장학회지
    • /
    • 제28권6호
    • /
    • pp.250-255
    • /
    • 2018
  • 본 연구에서는 3D-프린팅 적층 공정으로 제조한 인공관절용 CoCrMo 합금 소재의 HIP 처리를 포함한 복합열처리 후 소재의 인장특성, 내마모 특성 등의 기계적 특성과 결정구조 및 미세조직 등의 재료특성 변화를 고찰하였다. 내부마이크로 기공을 제거하기 위한 HIP 열처리와 금속탄화물 생성을 위한 상압열처리 및 금속탄화물의 균질화를 위한 용체화 열처리를 거치는 복합열처리 공정을 실시하여 인공관절 소재로서의 특성을 부여하고자 하였다. 3D-프린팅 적층 공정으로 제조한 인공관절용 CoCrMo 합금 소재의 복합열처리 효과는 HIP 공정중의 치밀화 과정, 상압열처리 중의 금속탄화물 생성 및 용체화 열처리 과정중의 금속탄화물의 균질화 효과임을 XRD, FE-SEM, EDS 분석으로 확인하였다.

보육시설과 지역아동센터 칼과 도마의 미생물학적 안전성 평가 (Evaluation of Microbiological Safety of Knives and Cutting Boards in Child Care Centers)

  • 강주영;박은지;이한철;박민지;오도경;김찬영;정은선;이영주;김중범
    • 한국식품영양학회지
    • /
    • 제33권6호
    • /
    • pp.702-709
    • /
    • 2020
  • The purpose of this study was to evaluate microbiological contamination of knives and cutting boards in child-care centers. Materials used in this study were swabbed of cutting boards and knives (blade, handle of knife, and joint of handle and blade) in 129 child-care centers. Mean values of total aerobic bacteria of swabs of knives and cutting boards were 1.7±0.7 log cfu/100 ㎠ and 1.7±0.9 log cfu/100 ㎠, respectively. Contamination levels of coliform bacteria from knives and cutting boards were 1.5±0.6 log cfu/100 ㎠ and 1.7±0.8 log cfu/100 ㎠, respectively. Comparing microbiological contamination levels of knives and cutting boards according to type and size of child-care centers, there was no significant difference. Bacillus cereus was detected in knife handles and cutting boards. Diarrhea-type toxin gene (entFM) was detected in B. cereus isolates. Antibiotic resistance tests showed that B. cereus was resistant to β-lactam antibiotics. To reduce microbiological contamination levels of knives and cutting boards in child-care centers and prevent food poisoning from bacteria contamination, continuous education by children's food-service management center is needed for sterilization and disinfection of knives and cutting boards.

오염물질 확산방지를 위한 토목섬유 연직차수벽 연결부의 투수성능 평가 (Permeability Characteristics of Geosynthetics Vertical Barrier Connections for the Prevention of Contaminants Diffusion)

  • 박정준
    • 한국재난정보학회 논문집
    • /
    • 제18권1호
    • /
    • pp.1-9
    • /
    • 2022
  • 연구목적: 본 연구에서는 토목섬유 연직차수시스템에 사용되는 팽창 지수재를 사용하여 지수재의 팽창에 따른 차수성능을 평가하였다. 연구방법: 토목섬유 연직차수 공법 적용시 연결부에 대한 투수능을 판단하기 위하여 ASTM D5887과 ASTM D6766을 준용하였다. 팽창 지수재를 각 용액에 포화시킨 후 시간경과에 따른 무게, 두께, 부피 변화를 분석하였으며, 토목섬유 연직차수벽 연결부에 팽창지수재를 설치하여 투수 특성을 평가하였다. 연구결과: 염수조건에서 지수재의 팽창반응 시간이 상대적으로 늘어남에 따라 투수능의 저하도 담수에서 보다 작은 감소폭을 나타내었다. 또한 토목섬유 연직차수재료의 결속 방법에 따라 롤 이음방식이 인터록 방식 보다 수두차에 의한 압력저항이 커서 차수성능이 다소 우수하게 나타났다. 결론: 주유소, 유류저장시설 및 산업단지 등 오염물의 유출을 추정할 수 있는 도심지 오염원에서는 오염물질 확산을 방지할 수 있는 사전대응 기술이 피해규모를 현격하게 감소시킬 수 있다.

Compressive behavior of concrete-filled square stainless steel tube stub columns

  • Dai, Peng;Yang, Lu;Wang, Jie;Ning, Keyang;Gang, Yi
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.91-106
    • /
    • 2022
  • Concrete-filled square stainless steel tubes (CFSSST), which possess relatively large flexural stiffness, high corrosion resistance and require simple joint configurations and low maintenance cost, have a great potential in constructional applications. Despite that the use of stainless steel may result in high initial cost compared to their conventional carbon steel counterparts, the whole-life cost of CFSSST is however considered to be lower, which offers a competitive choice in engineering practice. In this paper, a comprehensive experimental and numerical program on 24 CFSSST stub column specimens, including 3 austenitic and 3 duplex stainless steel square hollow section (SHS) stub columns and 9 austenitic and 9 duplex CFSSST stub columns, has been carried out. Finite element (FE) models were developed to be used in parametric analysis to investigate the influence of the tube thickness and concrete strength on the ultimate capacities more accurately. Comparisons of the experimental and numerical results with the predictions made by design guides ACI 318, ANSI/AISC 360, Eurocode 4 and GB 50936 have been performed. It was found that these design methods generally give conservative predictions to the ultimate capacities of CFSSST stub columns. Improved calculation methods, developed based on the Continuous Strength Method, have been proposed to provide more accurate estimations of the ultimate resistances of CFSSST stub columns. The suitability of these proposals has been validated by comparison with the test results, where a good agreement between the predictions and the test results have been achieved.

Collapse failure mechanism of subway station under mainshock-aftershocks in the soft area

  • Zhen-Dong Cui;Wen-Xiang Yan;Su-Yang Wang
    • Geomechanics and Engineering
    • /
    • 제36권3호
    • /
    • pp.303-316
    • /
    • 2024
  • Seismic records are composed of mainshock and a series of aftershocks which often result in the incremental damage to underground structures and bring great challenges to the rescue of post-disaster and the repair of post-earthquake. In this paper, the repetition method was used to construct the mainshock-aftershocks sequence which was used as the input ground motion for the analysis of dynamic time history. Based on the Daikai station, the two-dimensional finite element model of soil-station was established to explore the failure process of station under different seismic precautionary intensities, and the concept of incremental damage of station was introduced to quantitatively analyze the damage condition of structure under the action of mainshock and two aftershocks. An arc rubber bearing was proposed for the shock absorption. With the arc rubber bearing, the mode of the traditional column end connection was changed from "fixed connection" to "hinged joint", and the ductility of the structure was significantly improved. The results show that the damage condition of the subway station is closely related to the magnitude of the mainshock. When the magnitude of the mainshock is low, the incremental damage to the structure caused by the subsequent aftershocks is little. When the magnitude of the mainshock is high, the subsequent aftershocks will cause serious incremental damage to the structure, and may even lead to the collapse of the station. The arc rubber bearing can reduce the damage to the station. The results can offer a reference for the seismic design of subway stations under the action of mainshock-aftershocks.