DOI QR코드

DOI QR Code

Synthesis and Rapid Consolidation of W-1.5 ZrO2 Composite

W-1.5 ZrO2 복합재료 합성과 급속소결

  • Kim, Seong-Eun (Division of Advanced Materials Engineering, the Research Center of Hydrogen Fuel Cell, Chonbuk National University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Hydrogen Fuel Cell, Chonbuk National University)
  • 김성은 (전북대학교 신소재공학부 수소연료전지 연구센터) ;
  • 손인진 (전북대학교 신소재공학부 수소연료전지 연구센터)
  • Received : 2018.07.03
  • Accepted : 2018.10.16
  • Published : 2018.11.27

Abstract

$ZrO_2$ is a candidate material for hip and knee joint replacements because of its excellent combination of biocompatibility, corrosion resistance and low density. However, the drawback of pure $ZrO_2$ is a low fracture toughness at room temperature. One of the most obvious tactics to cope with this problem is to fabricate a nanostructured composite material. Nanomaterials can be produced with improved mechanical properties(hardness and fracture toughness). The high-frequency induction heated sintering method takes advantage of simultaneously applying induced current and mechanical pressure during sintering. As a result, nanostructured materials can be achieved within very short time. In this study, W and $ZrO_2$ nanopowders are mechanochemically synthesized from $WO_3$ and Zr powders according to the reaction($WO_3+3/2Zr{\rightarrow}W+3/2ZrO_2$). The milled powders are then sintered using high-frequency induction heating within two minutes under the uniaxial pressure of 80MPa. The average fracture toughness and hardness of the nanostructured W-3/2 $ZrO_2$ composite sintered at $1300^{\circ}C$ are $540kg/mm^2$ and $5MPa{\cdot}m^{1/2}$, respectively. The fracture toughness of the composite is higher than that of monolithic $ZrO_2$. The phase and microstructure of the composite is also investigated by XRD and FE-SEM.

Keywords

References

  1. S. M. Kwak, H. K. Park and I. J. Shon, Korean J. Met. Mater., 51, 341 (2013). https://doi.org/10.3365/KJMM.2013.51.5.341
  2. I.-J. Shon, J.-K. Yoon and K.-T. Hong, Met. Mater. Int., 24, 130 (2018). https://doi.org/10.1007/s12540-017-7135-5
  3. I.-J. Shon, Int. J. Refract. Met. Hard Mater., 72, 257 (2018). https://doi.org/10.1016/j.ijrmhm.2017.12.031
  4. I.-J. Shon, Ceram. Int., 44, 2587 (2018). https://doi.org/10.1016/j.ceramint.2017.10.120
  5. I.-J. Shon, Korean J. Met. Mater., 51, 110 (2017).
  6. I.-J. Shon, Ceram. Int., 43, 1612 (2017). https://doi.org/10.1016/j.ceramint.2016.10.089
  7. I.-J. Shon, J.-K. Yoon and K.-T. Hong, Korean J. Met. Mater., 55, 179 (2017).
  8. I.-J. Shon, Int. J. Refract. Met. Hard Mater., 64, 242 (2017). https://doi.org/10.1016/j.ijrmhm.2016.07.024
  9. I.-J. Shon, Ceram. Int., 43, 890 (2017). https://doi.org/10.1016/j.ceramint.2016.09.169
  10. R. L. Coble, J. Appl. Phys., 41, 4798 (1970). https://doi.org/10.1063/1.1658543
  11. Z. Shen, M. Johnsson, Z. Zhao and M. Nygren, J. Am. Ceram. Soc., 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  12. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade and P. Asoka-Kumar, Appl. Phys. Lett., 85, 573 (2004). https://doi.org/10.1063/1.1774268
  13. J. E. Garay, U. Anselmi-Tamburini and Z.A. Munir, Acta Mater., 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  14. S.-M. Kwon, S.-J. Lee and I.-J. Shon, Ceram. Int., 41, 835 (2015). https://doi.org/10.1016/j.ceramint.2014.08.042
  15. C. Suryanarayana and M. Grant Norton, X-ray diffraction: A practical approach, p. 213, Plenum Press, New York, (1998).
  16. K. Niihara, R. Morena and D. P. H. Hasselman, J. Mater. Sci. Lett., 1, 13 (1982). https://doi.org/10.1007/BF00724706
  17. R. Malewar, K. S. Kumar, B. S. Murty, B. Sarma and S. K. Pabi, J. Mater. Res., 22, 1200 (2007). https://doi.org/10.1557/jmr.2007.0166