• 제목/요약/키워드: joint length

검색결과 1,032건 처리시간 0.025초

Comparative Analysis of Gait Parameters and Symmetry between Preferred Walking Speed and Walking Speed by using the Froude Number

  • Yoo, Si-Hyun;Kim, Jong-Bin;Ryu, Ji-Seon;Yoon, Suk-Hoon;Park, Sang-Kyoon
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.221-228
    • /
    • 2016
  • Objective: The purpose of this study was to investigate differences in gait parameters and symmetry between walking speed by using the Froude number and preferred walking speed. Method: Fifty adults (age: $21.0{\pm}1.7years$, body weight: $71.0{\pm}9.2kg$, height: $1.75{\pm}0.07m$, leg length: $0.89{\pm}0.05m$) participated in this study. Leg length-applied walking speed was calculated by using the Froude number, defined as Fr = ${\upsilon}^2$/gL, where v is the velocity, g is the gravitational acceleration, and L is the leg length. Video data were collected by using eight infrared cameras (Oqus 300, Qualysis, Sweden) and the Qualisys Track Manager software (Qualisys, Sweden), with a 200-Hz sampling frequency during two-speed walking (preferred walking speed [PS] and leg length-applied walking speed [LS]) on a treadmill (Instrumented Treadmill, Bertec, USA). The step length, stride length, support percentage, cadence, lower joint angle, range of motion (ROM), and symmetry index were then calculated by using the Matlab R2009a software. Results: Step and stride lengths were greater in LS than in PS (p < 0.05). The right single-support percentage was greater in LS than in PS (p < 0.05). The hip joint angle at heel contact and toe-off were greater in LS than in PS (p < 0.05). The hip and knee joint ROM were greater in LS than in PS (p < 0.05). Conclusion: Based on our findings, we suggest that increased walking speed had a significant effect on step length, stride length, support percentage, and lower joint ROM.

Investigation of the tensile behavior of joint filling under experimental test and numerical simulation

  • Fu, Jinwei;Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi;Guo, Mengdi
    • Structural Engineering and Mechanics
    • /
    • 제81권2호
    • /
    • pp.243-258
    • /
    • 2022
  • In this paper, tensile behavior of joint filling has been investigated under experimental test and numerical simulation (particle flow code). Two concrete slabs containing semi cylinder hole were prepared. These slabs were attached to each other by glue and one cubic specimen with dimension of 19 cm×15 cm×6 cm was prepared. This sample placed in the universal testing machine where the direct tensile stress can be applied to this specimen by implementing a special type of load transferring device which converts the applied compressive load to that of the tensile during the test. In the present work, two different joint filling thickness i.e., 3 mm and 6 mm were prepared and tested in the laboratory to measure their direct tensile strengths. Concurrent with experimental test, numerical simulation was performed to investigate the effect of hole diameter, length of edge notch, filling thickness and filling length on the tensile behavior of joint filling. Model dimension was 19 cm×15 cm. hole diameter was change in four different values of 2.5 cm, 5 cm, 7.5 cm and 10 cm. glue lengths were different based on the hole diameter, i.e., 12.5 cm for hole diameter of 2.5 cm, 10 cm for hole diameter of 5 cm, 7.5 cm for hole diameter of 7.5 cm and 5 cm for hole diameter of 10 cm. length of edge notch were changed in three different value i.e., 10%, 30% and 50% of glue length. Filling thickness were changed in three different value of 3 mm, 6 mm and 9 mm. Tensile strengths of glue and concrete were 2.37 MPa and 6.4 MPa, respectively. The load was applied at a constant rate of 1 kg/s. Results shows that hole diameter, length of edge notch, filling thickness and filling length have important effect on the tensile behavior of joint filling. In fixed glue thinks and fixed joint length, the tensile strength was decreased by increasing the hole diameter. Comparing the results showed that the strength, failure mechanism and fracture patterns obtained numerically and experimentally were similar for both cases.

절리암반내 터널의 안정성 평가를 위한 개별요소 모델링에 대한 고찰 (Some Considerations on the Distinct Element Modelling for the Stability Analysis of a Tunnel in a Jointed Rock Mass)

  • 장석부;허도학
    • 한국터널지하공간학회 논문집
    • /
    • 제3권2호
    • /
    • pp.3-12
    • /
    • 2001
  • 본 논문은 절리암반 터널의 안정성 해석을 위한 2차원 개별요소모델링방법에 대한 개선방안을 제안하였다. 먼저, 절리군과 터널의 상대방위를 고려하여 터널단면상에서 불연속거동이 가능한 절리군을 구별하는 기준을 제시하였다. 이 기준에 따라 불연속거동이 가능한 절리군은 개별요소(암석블록)의 변이 되도록 하고 그 외 절리군은 암석블록의 탄성특성을 보정하는 방법을 제시하였다. 또한, 주어진 절리의 기하학적 특성에 대해서 절리의 방위편차와 유한길이를 고려한 복잡한 모델과 절리의 평균방위와 무한길이를 고려한 단순한 모델의 특성을 분석하였다. 그 결과, 후자의 모델이 일관성 있는 터널의 국부적 파괴양상과 명료한 암반의 불연속거동을 보여줌으로써 터널설계목적에 적절함을 확인하였다.

  • PDF

Experimental observation and numerical simulation of cement grout penetration in discrete joints

  • Lee, Jong-Won;Kim, Hyung-Mok;Yazdani, Mahmoud;Lee, Hangbok;Oh, Tae-Min;Park, Eui-Seob
    • Geomechanics and Engineering
    • /
    • 제18권3호
    • /
    • pp.259-266
    • /
    • 2019
  • This paper presents a comparison between experimental measurements and numerical estimations of penetration length of a cement grout injected in discrete joints. In the experiment, a joint was generated by planar acryl plates with a certain separation distance (; aperture) and was designed in such a way to vary the separation distances. Since a cement grout was used, the grout viscosity can be varied by controlling water-cement (W/C) ratios. Throughout these experiments, the influence of joint aperture, cement grout viscosity, and injection rate on a penetration length in a discrete joint was investigated. During the experiments, we also measured the time-dependent variation of grout viscosity due to a hardening process. The time-dependent viscosity was included in our numerical simulations as a function of elapsed time to demonstrate its impact on the estimation of penetration length. In the numerical simulations, Bingham fluid model that has been known to be applicable to a viscous cement material, was employed. We showed that the estimations by the current numerical approach were well comparable to the experimental measurements only in limited conditions of lower injection rates and smaller joint apertures. The difference between two approaches resulted from the facts that material separation (; bleeding) of cement grout, which was noticeable in higher injection rate and there could be a significant surface friction between the grout and joint planes, which are not included in the numerical simulations. Our numerical simulation, meanwhile, could well demonstrate that penetration length can be significantly over-estimated without considering a time-dependency of viscosity in a cement grout.

The FEM Analysis of Recessing Location on the Stress Distribution in Aluminum Double Lap Joint

  • You, Min;Yan, Zhanmou;Zheng, Xiaoling;Yu, Haizhou
    • 접착 및 계면
    • /
    • 제7권4호
    • /
    • pp.13-17
    • /
    • 2006
  • The elasto-plastic finite element method (FEM) was used to investigate the effect of off-center recessing location (8 mm length) on the stress distribution in the lap zone of adhesively bonded aluminium double lap joint. The results from simulation showed that the effect of off-cent recessing in bondline of double lap joint in the mid-bondline is not evidently to stress distribution in mid-bondline but the peak stresses both in mid-bondline and in the interface near the adherend side of the joint may increase markedly when an 8 mm length recessing was arranged symmetrical to the point of x =18 mm. When shifting an 8 mm length recess from near left end to the right end of the lap zone, all the highest peak stresses in the mid-bondline occurred under the condition of recess arranged symmetrical to the point of x = 6 mm.

  • PDF

충전재가 함유된 단일겹치기 접착 조인트의 열적 특성에 관한 연구 (Thermal Characteristic of the Tubular Single tap Adhesively Bonded Joint bonded with filler containing epoxy adhesive)

  • 김진국;이대길
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.370-376
    • /
    • 2001
  • When an adhesive joint is exposed to high environmental temperature, the tensile load capability of the adhesive joint decreases because the elastic modulus and failure strength of structural adhesive decrease. The thermo-mechanical properties of structural adhesive can be improved by addition of fillers to the adhesive. In this paper, the elastic modulus and failure strength of adhesives as well as the tensile load capability of tubular single lap adhesive joints were experimentally and theoretically investigated with respect to the volume fraction of filler (alumina) and the environmental temperature. Also the tensile modulus of the fille containing epoxy adhesive was predicted using a new equation which considers filler shape, filler content and environmental temperature. The tensile load capability of the adhesive joint was predicted by using the effective strain obtained from the finite element analysis and a new failure model, from which the relation between the bonding length and the crack length was developed with respect to the volume fraction of filler.

  • PDF

발의 계측과 성인여자구두의 기본치수에 관한 연구 -경상도지역의 여대생을 중심으로- (A study on foot measurement and adult women's shoe standard size.)

  • 김효은
    • 대한가정학회지
    • /
    • 제24권3호
    • /
    • pp.43-50
    • /
    • 1986
  • This study is toidentify what makes people uncomfortable when people wear new shoes and to gain fundamental data for establishing shoe sizes. Data materal from the 16 measurement investigation conducted on 796 college girl students shows the following. 1) More than 96% of the subjects have experienced footache when they wore new shoes. It is significant that 45.76% of the subjects answered shoe width, especially pump-lining part cause them to feel more pain in their feet than any other measurement elements. 2) According to multiple correlation analysis to know which parts of feet determine shoe size, both multiple correlation coefficient of feet length to other parts of foot and joint girth to other parts of foot show the highest of R=0.93. 3) According to the ANOVA-tested result of estimated function when both foot-length-joint girth and foot length-joint girth-foot width are independent variables in each case, the level of α〈0.001 is very significant. 4) The comparision between KS G3116 adult women's shoe size establishment table and my table in this study reveals that the cases of more increased joint girth measurements than standard joint girth measurements in KS G 3116 table are easy to find.

  • PDF

파워워킹과 일반보행의 운동학적 및 EMG 비교분석 (The Comparative Analysis of Kinematic And Emg on Power Walking and Normal Gait)

  • 조규권;김유신;김은정
    • 한국운동역학회지
    • /
    • 제16권2호
    • /
    • pp.85-95
    • /
    • 2006
  • The purpose of this study of which 10 University students in their twenties are the objects was to examine the causal differences of kinematic and electromyography during power walking and normal gait. We came to the following conclusions. 1) It took less time to stance phase, swing phase and whole gait time during power walking compared with normal gait. 2) During power walking, the step length and step length and lower limb length are longer than that of normal gait. 3) During power walking, ankle joint angle became more plantar flexed at LIC and RTO, knee joint angle become more flexed, so did hip joint angle at LIC and RTO. Besides during power walking the shoulder joint angle movement was bigger and elbow joint angle was more flexed as the trait of power walking. 4) During power walking, through out the phase the muscle activity of all muscle was higher expecially the muscle activity of Biceps brachii, gastrocnemius medialis, gastrocnemius lateralis, Soleus was higher. Therefore during power walking, one's scope of activity and muscle activity is relatively higher than those of normal gait, so power walking helps one strengthen muscular power and energy metabolism. This will be useful information for those who are interested in diet and well-being.

최소자승법을 이용한 원판형 절리의 직경분포와 체적빈도 추정에 관한 연구 (A Study on the Estimation of Diameter Distribution and Volumetric Frequency of Joint Discs Using the Least Square Method)

  • 송재준
    • 터널과지하공간
    • /
    • 제15권2호
    • /
    • pp.137-144
    • /
    • 2005
  • 이 연구에서는 최소자승법을 이용하여 절리의 직경분포를 추정하는 방법을 개발하였다. 이전에 Song and Lee가 제안한 방법에서는 현장에서 조사한 양끝내포선(contained trace) 분포로부터 무한 조사창에서 정의되는 절리선(joint trace) 길이 분포를 먼저 구하고 이 후에 직경분포를 구하게 된다. 그러나 새로 제안한 방법을 사용하면 중간 추정과정없이 현장에서 얻은 양끝내포선 분포로부터 바로 절리의 직경분포를 구할 수 있다. 이전의 방법과 비교할 때 새로 제안된 방법은 표본의 크기가 작을 때 조금 더 높은 추정정밀도를 보이며, 직경분포를 추정하는 과정에서 절리의 기하학적 파라미터의 하나인 체적빈도(volumetric frequency)도 제공한다. 새로운 추정법의 검증을 위해 Monte Carlo 시뮬레이션을 적용하였다.

Effect of FRP parameters in strengthening the tubular joint for offshore structures

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Ocean Systems Engineering
    • /
    • 제8권4호
    • /
    • pp.409-426
    • /
    • 2018
  • This paper presents the strengthening of tubular joint by wrapping Carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP). In this study, total number of layers, stacking sequence and length of wrapping are the different parameters involved when fiber reinforced polymers (FRP) composites are used for strengthening. For this, parameters where varied and results were compared with the reference joint. The best stacking sequence was identified which has the highest value in ultimate load with lesser deflections. For determining the best stacking sequence, numerical investigation was performed on CFRP composites; length of wrapping and number of layers were fixed. Later, the studies were focused on CFRP and GFRP strengthened joint by varying the total number of layers and length of wrapping. An attempt was done to propose a parametric equation from multiple regression analysis, which can be used for CFRP strengthened joints. Hashin failure criteria was used to check the failure of composites. Results revealed that FRP was having a greater influence in the load bearing capacity of joints, and in reducing the deflections and stresses of joint under axial compressive loads. It was also seen that, CFRP was far better than GFRP in reducing the stresses and deflection.