• Title/Summary/Keyword: joint characteristics

Search Result 1,949, Processing Time 0.03 seconds

Stress Analysis of Double T-Welded Joints Considering External Forces (외력을 고려한 양면 T-용접이음부의 음력해석)

  • 김성환;방한서;방희선;송관형
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.215-220
    • /
    • 2001
  • In the T-joint welding, the complete penetration joint which is obtained by groove welding with edge preparation is generally required thor the safety and reliability of structures but this way have the some defects such as increase of working time, consumed welding electrode quantity and large welding deformation. If there is no probrem, in the strength, T-joint welding without edge preparation will be profitably understood in the economical and welding deformation side. In this paper, we performed the finite element analysis to understand the characteristics of welding residual stresses on two models, complete penetration joint have the edge preparation and incomplete penetration joint without edge preparation, respectively. Especially, we observed the relation between welding residual stress distributed on the notch of gap in the root and external force in the incomplete penetration joint without edge preparation.

  • PDF

Roughness Mobilization Characteristics of Artificial Triangular Asperities (인공 삼각 돌출부의 거칠기 발현특성)

  • Hong, Eun-Soo;Choi, Sung-Oong;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.760-767
    • /
    • 2006
  • Underestimation of rock joint shear strength comes from an inadequate consideration of roughness mobilization behavior, which is changed by asperity size as well applied normal load. In this study, we performed rock joint shear tests, and studied the roughness mobilization characteristics related with the scale of normal stress and asperities. Test specimens with artificial triangular asperities were manufactured. The specimens consisted of 3 types, and each type represented unevenness, waviness and total roughness(superposition of unevenness and waviness). The experimental results show that the roughness mobilization characteristics are varied by the scale of normal stress and asperities. Furthermore, the investigation shows that the rate of geometrical component and mechanical component in the total roughness is also varied by the scale of normal stress and asperities. These results suggest that we should consider the roughness mobilization characteristics for the roughness quantification and the shear strength modelling.

  • PDF

Dynamic Analysis of Mechanical Joint Parameters Using the Variation of Frequency Response Function (주파수응답함수의 변화를 이용한 기계적 결합부의 동특성 파라미터 해석)

  • 강성구;지태한;유원희;박영필
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.155-161
    • /
    • 1994
  • The dynamic behavior of a complex mechanical structure can be identified by dividing the structure into a series of smaller structure, called sub- structure and by studying the dynamic characteristics of these components. Generally, the dynamic characteristics of mechanical structure are strongly affected by the properties of joint parameters. In this paper, to identify the dynamic characteristics of mechanical structure, and experimental identification method in which directrly measured frequency response function(FRF) is used is considered. The method does not use the procedure of complex matrix calculation but use that of real matrix calculation. To confirm this method, computer simulation is performed by using frequency response function mixed with noise, and the experimental study is performed about the simple structure. The dynamic characteristics of joint parameters and identified more accurately than in using the prcedure of complex matrix calculation.

  • PDF

The Effects of Inter-Organizational Relationship Characteristics on Supply Chain Agility: From the Supplier Perspective (조직간 관계특성이 공급사슬 민첩성에 미치는 영향에 관한 연구: 공급업체 관점으로)

  • Chang, Hwal-Sik;Kim, Chae-Jeong
    • The Journal of Information Systems
    • /
    • v.21 no.3
    • /
    • pp.187-214
    • /
    • 2012
  • Supply chain management(SCM) helps firms in integrating their business by collaborating with other value chain partners to meet the unpredictable demand of the end user. Agility is the fundamental characteristic of a supply chain needed for survival in turbulent and volatile markets, which are becoming norms as product life cycles shorten and environmental forces create additional uncertainty resulting in higher risk in the supply chain management. Literature reviews reveals various factors that could affect the agility. The objective of this study is to derive interdependence, partnership, quality of information, joint problem solving, modelize the mutual influential relationship between them, and look into the influential relationship influencing the agility. To test the proposed model, we used a data set generated from survey. Date analysis was conducted using 122 respondents. We used structural equation model (SEM) implemented in partial least square(PLS). The results of this study can be summarized as follows. Interdependence had a significant impact on partnership. Partnership had a significant impact on quality of information and joint problem solving. Quality of information had a significant impact on joint problem solving. Quality of information and joint problem solving had a significant impact on agility. This study diagnoses that Inter-organizational relationship characteristics are important for supply chain agility. Inter-organizational relationship characteristics are considered as an essential factor for supply chain agility.

Prediction of the Dynamic Characteristics of a Bolt-Joint Plates According to Bolting Conditions (볼트 체결 조건에 따른 두 판재의 동적 특성 예측)

  • Hong Sang-joon;Lee DongJin;Yoo Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1175-1182
    • /
    • 2005
  • General systems have many substructures assembled at joints. The bolted joint is generally used in assembling the mechanical parts. However, there are no effective modeling methods to analyze the dynamic characteristics of bolt jointed structure using the finite element (FE) analysis, especially in case of large area contact. Moreover, the design methods for the appropriate bolt locations and the number of bolts considering the dynamic characteristics are not guided properly. In this study, a proper modeling method is developed to simulate the dynamic characteristics of a structure with the large interfaced area using the cone frusta method and spring elements. The natural frequencies are also controlled by adjusting the bolt-joint location and the number of bolts considering relative distances in mode shapes at the interface of bolt-jointed plates. The Modeling method and the optimized design method are verified based on the experimental and the FE analysis results.

Trajectory planning for redundant robot by joint disturbance torque minimization (여유자유도 로봇의 관절외란최소화를 이용한 궤적계획)

  • 최명환;최병진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1581-1584
    • /
    • 1997
  • This paper poropsed an efficient optimization technuque to resolve redundancy and a trajectory planning for a high precision control using proposed optimization technique. The proposed techniqus is the joint disturbance torque optimizatioin considering redundancy in the joing servo control. Joint disturbance torque is not unknown it is described dynamic equation ignored friction and viscosity. The proposed technique is used the dynamic equatiion included the joint disturbance torque characteristics. Numerical example of 3 joint planar redundant robot manipulator is simulated. In the 2-norm minimization of joint disturbance torque we compared pseudoinverse local optimization with proposed technique, and the results showed better the proposed technique. So the proposed technique can be highly precision controlled redundant robot manipulators in the joint servo control.

  • PDF

Joint mechanoreceptors of shoulder (견관절의 관절 기계적수용기)

  • Kweon Oh-Hyun;Yuk Goon-Chang;Bae Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.2
    • /
    • pp.12-18
    • /
    • 2003
  • Proprioception can be defined as a specialized variation of touch that encompasses the sensation of joint movement(kinesthesia) and joint position(static joint position sense). Several types of joint and muscular mechanoreceptors provide proprioceptive information for joint stability. Joint mechanoreceptors have been classified into four types based of activation characteristics : Ruffini endings, Pacinian corpuscles, Golgi tendon organlike endings, free nerve endings. The paper review the morphology, distrubution, function of mechanoreceptors in shoulder joint.

  • PDF

A Study on Joint Design Factors for Low Vibration Vehicle (저진동 차량을 위한 결합부 인자 연구)

  • Lee, Jae-Woo;Sung, Young-Suk;Kang, Min-Seok;Lee, Sang-Beom;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.177-184
    • /
    • 2008
  • Vehicle body frame stiffness affects the dynamic and static characteristics. Vehicle frame structure performance is greatly affected by crossmember and joint design. While the structural characteristic of these joint vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in design cycle. This paper present the joint design factors affecting on low frequency vibration. The joint factors are joint panel thickness, flange width and weld point space. To study the effect on vehicle low frequency vibration, case studies for these factors are performed. The result can present design guide for high-stiffness vehicle.

  • PDF

Influence of Joint Spacing to Rock Slope Stability (절리 간격이 암반 사면의 안정성에 미치는 영향)

  • 윤운상;권혁신;김정환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.511-518
    • /
    • 2000
  • Characteristics of joint orientation, length, spacing and their distribution are very important factors for slope stability, Especially, the effect of joint spacing is an essential factor of slope stability. This study is to analyze the effect of joint spacing in cases of sliding and toppling, which is a typical failure mode. Joint spacing can divided into vertical spacing(spacing) and horizontal spacing(gap). And then, the spacing/length ratio of joint directly affect rock slope failure. When the ratio is below 0.05, the possibility of failure is rapidly increased. In case of toppling, the possibility of failure depends on the ratio of spacing to height of slope ratio slope. As the ratio decreases, the possibility of toppling failure increased. The critical ratio of spacing to height of slope is determined by the dip angle of the slope and the orientation of joint sets.

  • PDF

A Study on Design Parameters Affecting the Stiffness of Center Pillar-Roof Rail Joint (센터필러 -루프레일 결합부의 강성에 영향을 미치는 인자 연구)

  • 이상범;임홍재;이종선
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.94-99
    • /
    • 2004
  • The global stiffnesses and vibration characteristics of vehicle structures are mainly influenced by local stiffnesses of the joint structures consisted of complicated thin-walled panels. In this paper, the parametric study for the stiffnesses of the center pillar-roof rail joint of vehicle structure is performed through the linear static analysis. The analysis result shows that the reinforcement panel much affects the joint stiffness of out-plane direction (i.e., z-direction). And also, the flange radius and width of the joint structure much affect the Joint stiffness of out-plane direction. The study shows that vehicle joint stiffnesses can be effectively determined in designing vehicle structure through the parametric study.