• Title/Summary/Keyword: joint characteristics

Search Result 1,951, Processing Time 0.029 seconds

Ultrasound and clinical findings in the metacarpophalangeal joint assessment of show jumping horses in training

  • Yamada, Ana Lucia M.;Pinheiro, Marcelo;Marsiglia, Marilia F.;Hagen, Stefano Carlo F.;Baccarin, Raquel Yvonne A.;da Silva, Luis Claudio L.C.
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.21.1-21.14
    • /
    • 2020
  • Background: Physical exercise is known to cause significant joint changes. Thus, monitoring joint behavior of athletic horses is essential in early disorders recognition, allowing the proper management. Objectives: The aims of this study were to determine the morphological patterns, physical examination characteristics and ultrasound findings of show jumping horses in training and to establish a score-based examination model for physical and ultrasound follow-ups of metacarpophalangeal joint changes in these animals. Methods: A total of 52 metacarpophalangeal joints from 26 horses who were initially in the taming stage were evaluated, and the horses' athletic progression was monitored. The horses were evaluated by a physical examination and by B-mode and Doppler-mode ultrasound examinations, starting at time zero (T0), which occurred concomitantly with the beginning of training, and every 3 months thereafter for a follow-up period of 18 months. Results: The standardized examination model revealed an increase in the maximum joint flexion angles and higher scores on the physical and ultrasound examinations after scoring was performed by predefined assessment tools, especially between 3 and 6 months of evaluation, which was immediately after the horses started more intense training. The lameness score and the ultrasound examination score were slightly higher at the end of the study. Conclusions: The observed results were probably caused by the implementation of a training regimen and joint adaptation to physical conditioning. The joints most likely undergo a pre-osteoarthritic period due to work overload, which can manifest in a consistent or adaptive manner, as observed during this study. Thus, continuous monitoring of young athlete horses by physical and ultrasound examinations that can be scored is essential.

Joint Characteristics in Sedimentary Rocks of Gyeongsang Supergroup (경상누층군 퇴적암의 절리 특성 연구)

  • Chang, Tae-Woo;Son, Byeong-Kook
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.351-363
    • /
    • 2009
  • Two orthogonal joint sets develop well only in sandstone beds in the sandstone-mudstone sequences of Gumi and Dasa outcrops within Cretaceous Gyeongsang Basin. And various joint data are similar in the beds of the same thickness in both outcrops, meaning that the joint sets were homogeneously produced by extensional deformation in the same regional stress field. Most of joints in the sandstone beds are orthogonal to, and confined by bed boundaries, which are believed to be formed by hydrofracturing during consolidation after burial. Two orthogonal joint sets are considered to be almost coeval on the basis of mutual abutting relationship which makes up fracture grid-lock and a product of rapid switching of ${\sigma}_2$ and ${\sigma}_3$ axes with constant ${\sigma}_1$ direction oriented to vertical. The joint sets in the sandstone beds show planar surfaces, parallel orientations and regular spacing, with joint spacing linearly proportional to bed thickness. The spacing distributions of the joints seem to correspond to log-normal to almost normal distribution in most of the beds. But multilayer joints do not display regular spacing and dominant size. Either joint set in this study is characterized by a high level of joint density and a saturated spacing distribution as indicated by the mode/mean ratio values and the Cv(coefficient of variance) values. Joint aperture tends to increase with the vertical length of the joints controlled by bed thickness.

A Study of Motor Expertise about Kinematic and Kinetic Characteristics of Lower Extremity in the Seokmun Ilwol Martial Art Yin-yang Bo Gait Pattern (석문일월무예 음양보법의 숙련성에 따른 보행 패턴의 하지 운동학 및 운동역학적 특성)

  • Park, Bok-Hee;Kim, Ky-Hyoung
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.3
    • /
    • pp.239-248
    • /
    • 2014
  • The purpose of this study was to quantify kinematic and kinetic characteristics of Yin-yang Bo gait according to their motor expertise, one of the Seokmun Ilwol martial art gait patterns. Yin-yang Bo gait pattern shows initial forefoot contact instead of heel contact, and increased time of stance phase time, internal-external rotation of ankle-knee-hip joints and pelvic. It aims to produce and store the more energy through continuous homeostasis of center of gravity (COG) and performance of stretch-shortening cycle. Some of these characteristics also were similar to the gait modification strategies for reducing knee adduction moment such as toe-out progression, medial thrust, internal rotation of hip joint. To identify the characteristics, four factors of expert Yin-yang Bo gait performance group were compared to that of none expert group; 1) angles of COG displacement and rotation 2) distal joint pre-rotation in internal-external rotation of ankle-knee-hip joints and pelvic, 3) invariability pelvic potential and pelvic segment total energy 4) knee abduction moment. Six healthy(three male) subjects participated in the experiment to perform Yin-yang gait pattern. Three-dimensional and force plate data were collected. Kinematic and kinetic data were compared between two groups using t-tests. Results showed that 1) the peak point of COG internal rotation angle was reduced in expert group, 2) kneeexternal and hip joint -internal and pelvic rotation angle peak frames were more near points in expert group.

Laboratory Study of the Shear Characteristics of Fault Gouges Around Mt. Gumjung, Busan (부산 금정산일대에 분포하는 단층비지의 전단특성에 관한 실험적 고찰)

  • Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.113-121
    • /
    • 2012
  • The mechanical characteristics of a fault gouge from near Mt. Kumjung in Kumjung-Gu, Busan, were estimated from laboratory tests on different joint models. Fault gouge samples and joint samples in biotite granite were obtained from boreholes in the study area that had penetrated small faults associated with the Dongnae and Yangsan faults. XRD and SEM analyses revealed that for the fault gouge consists of several clay minerals with tabular structure (kaolinite, montmorillonite, illite, sericite), which could cause the considerable reduction of shear strength when wet. The shear strength of the fault gouge was obtained from direct shear tests of the fault gouge itself and from direct shear tests of several natural/artificial joint surfaces coated with fault gouge. The results indicate that the reduction of shear strength is more abrupt for the joint surfaces coated with fault gouge compared with uncoated joint surfaces, and that the friction angle of the fault gouge between joint surfaces is much lower than the internal friction angle of the fault gouge itself. Fault gouges in contact with rock, therefore, could have a stronger negative effect on the stability of structures in rock masses than the fault gouge itself.

An Immune-Electron Microscopic Study of the Apoptotic Cell during Mouse Knee Joint Development (생쥐 무릎관절 공간 발생에 있어 아포프토시스 세포에 관한 면역전자현미경적 연구)

  • Chae, Hee-Sun;Kim, Kyung-Yong;Lee, Won-Bok;Lim, Hyoung-Soo;Hwang, Douk-Ho;Chang, Ka-Yong
    • Applied Microscopy
    • /
    • v.28 no.1
    • /
    • pp.107-119
    • /
    • 1998
  • This study was designed to investigate the appearence and the characteristics of the apoptotic cells and the process of the joint cavity formation in mouse knee joint. Fetal mouse knee joints from 15 to 19 days of gestation were used. Paraffin-embedded serial sections, stained with H & E for light microscopic observation, Epon 812 embedded thin sections for electron microscopic observation and Lowicryl HM 20 embedded thin sections for immune-electron microscopic observation were prepared. Monoclonal antibodies to $\beta-tubulin$ and polyclonal antibodies to tissue transglutaminase were used for immune-electron microscopic study. The results obtained were as follows. 1. At 15 days of gestation, blood vessels, which have invaded in the mesenchymal cells, were present in the synovium, to form the joint cavity in the future. 2. At 16 days of gestation, the joint cleft was first appeared and several RBCs were present in the joint cleft. The invasion of blood vessels into the joint cleft was continuing, and apoptotic cells were present in the inner cell layer, adjacent to the joint cleft. Necrotic cells were also present in the outer cell layer; they were present 18 days of gestation, but apoptotic cells did not appear after 17 days of gestation. 3. In the apoptotic cells, transglutaminase were localized around vacuoles and the marginal site of the cytoplasm. 4. In the apoptotic cells, tubulin was around the endoplasmic reticulum and the marginal site of the cytoplasm. In the late stage of apoptotic cells, tubulin was localized diffusely in the cytoplasm. Tubulin was also strongly labeled around in the cytoplasm of the neighboring cell at which the apoptotic body was phagocytosed. Tubulin labeled particles were apparently increased in the seperated apoptotic bodies. On the basis of the above findings, it is proposed that during the development of the mouse knee joint, blood vessel invasion first occurs and then apoptosis and cell necrosis follow it. In the apoptotic cell, present in the synovium of the developing knee joint of the mouse. it is suggested that the redistribution of tubulin is associated with apoptotic process. And transglutaminase overexpressed in the apoptotic cell.

  • PDF

Correlationship Between Degree of Displacement and Range of Motion of the Subtalar joint after Calcaneal fracture (종골 골절 후 거골하 관절면의 전위 정도와 운동 범위의 상관 관계)

  • Park, In-Heon;Lee, Kee-Byung;Song, Kyung-Won;Lee, Jin-Young;Lee, Eung-Joo;Park, Rae-Seong
    • Journal of Korean Foot and Ankle Society
    • /
    • v.2 no.1
    • /
    • pp.19-29
    • /
    • 1998
  • The characteristics of the patients after the calcaneal fracture that were associated with an unsatisfactory outcome were subtalar incongruity, decreased Bohler angle ratio of the fractured to the normal side, an age of more than fifty years, work involving strenuous labor, and increased time missed from work due to the injury. The purpose of this study was to examine the reliability of measurements of the range of motion of the subtalar joint. To determine reliability, evaluates of the correlatioinship between the degree of the displacement of the subtalar joint and Circle draw test after the calcaneal fracture. Fifty patients who had had fifty five calcaneal fractures were managed with open reduction and internal fixation. The results were reviewed retrospectively, between 4months and three years after the operation, with use of an evaluation system for the subtalar joint and with plain radiographs. At follow up evaluation, the result was assessed on the basis of restoration of anatomy and function of the subtalar joint. We evaluated the subtalar joint with plain films that consist of anteroposterior projection, lateral projection, calcaneal axial view, and Broden's view, and the measurements of the displacement of the subtalar joint surface after the calcaneal fracture. And we evaluated the range of motion of the subtalar joint with Circle draw test for physical evaluation. Circle draw test was evaluated and demonstrated the motion of flexion-supination-adduction and extension-pronation-abduction of the subtalar joint. And there are correlationship between the degree of the displacement and range of motion of the subtalar joint after the calcaneal fracture. The report critically reviews methords used to measure Circle draw test for physical examination of the follow up after the calcaneal fracture.

  • PDF

Effect of Joint Orientation Distribution on Hydraulic Behavior of the 2-D DFN System (절리의 방향분포가 이차원 DFN 시스템의 수리적 특성에 미치는 영향)

  • Han, Jisu;Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.31-41
    • /
    • 2016
  • A program code was developed to calculate block hydraulic conductivity of the 2-D DFN(discrete fracture network) system based on equivalent pipe network, and implemented to examine the effect of joint orientation distribution on the hydraulic characteristics of fractured rock masses through numerical experiments. A rock block of size $32m{\times}32m$ was used to generate the DFN systems using two joint sets with fixed input parameters of joint frequency and gamma distributed joint size, and various normal distributed joint trend. DFN blocks of size $20m{\times}20m$ were selected from center of the $32m{\times}32m$ blocks to avoid boundary effect. Twelve fluid flow directions were chosen every $30^{\circ}$ starting at $0^{\circ}$. The directional block conductivity including the theoretical block conductivity, principal conductivity tensor and average block conductivity were estimated for generated 180 2-D DFN blocks. The effect of joint orientation distribution on block hydraulic conductivity and chance for the equivalent continuum behavior of the 2-D DFN system were found to increase with the decrease of mean intersection angle of the two joint sets. The effect of variability of joint orientation on block hydraulic conductivity could not be ignored for the DFN having low intersection angle between two joint sets.

A Study on the Characteristics of Vibration Due to the Forces of Drive Shaft (승용차량 구동축의 작용력에 따른 진동특성 연구)

  • Sa, Jongsung;Kang, Taewon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.708-716
    • /
    • 2013
  • This study aims to understand the applied forces and related vibrational characteristics of a tripod joint (TJ), which is mostly used in front-drive-type middle-sized sedans in South Korea. The plunging force (PF) and generated axial force (GAF) are the most influential quantities related to the vibrational characteristics of a driveshaft. To obtain meaningful data, specially designed tests were performed using MTS test sets. The results of direct measurements reveal that higher PF and GAF values appear to worsen the vibrational characteristics of the vehicle. On the other hand, the measured apparent mass is useful for calculating the applied forces for a short driveshaft that has no dynamic vibration absorber. Among diversely controlled samples, it shows that the viscosity and tight fit are very sensitive to shudder vibrations of the vehicle. Therefore, these are good design factors for quality controls in the production line of constant-velocity joints.

Characteristics of Elderly Drivers' Reach Motion to Seat Belt (고령운전자 시트 벨트 뻗침 거동 특성 분석)

  • Choi, Woo-Jin;Kwak, Seung-Ho;Choi, Hyung-Yun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.73-82
    • /
    • 2010
  • The purpose of this study is to understand motion characteristics of older drivers during reaching seat belt compared to young drivers and to provide design guidelines in order to reduce discomfort for the elderly. The whole body kinematics of each subject was captured using 12-camera motion analysis system. Subjective ratings on discomfort levels were obtained simultaneously using a questionnaire. This paper first presents the result of motion characteristics of elderly drivers' reach motion to seat belt. Compared to young drivers, older drivers performed seat belt reach motions less efficiently and moved slower due to mostly the movement error. Older drivers also made use of reduced joint range of motion in cervical left rotation, lumbar left rotation and right shoulder adduction, which can be explained by their reduced active range of motions (AROMs). To compensate for their reduced joint range of motion, older drivers rotated pelvis more.

Effects of Flange Joint on the Dynamic Characteristics of the External Cylindrical Grinding Wheel Spindle (외경연삭 휠 주축의 진동특성에 미치는 플랜지 결합부의 영향)

  • Kim, Sun-Min;Ha, Jae-Hoon;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.118-125
    • /
    • 1999
  • In the grinding process, generally, the exciting forces with high frequency can be generated due to the wheel wear and the grinding process. As the grinding speed increases, the precise investigation about the wheel dynamic characteristics is required. Conventionally the wheel-spindle has been considered with lumped model in dynamic modeling. With this lumped model, the significant mode resulted from the shell mode of wheel can be readily ignored. This paper suggests the new analysis model which includes the shell mode of wheel in modeling the wheel-spindle assembly. Furthermore, based on the suggested model, the effects of the bolt tightening force and the taper tightening force on the dynamic properties are investigated by the finite element modal analysis and the experimental method. As a result of investigation, the shell mode vibration of wheel affects the dynamic characteristics of the spindle assembly. Also, the vibration modes of the spindle assembly are significantly affected by the joint tightening forces.

  • PDF